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Abstract
When learning about the world, we develop mental represen-
tations or concepts for things we have never seen. At the same
time, we also develop representations for things that are similar
to what we have experienced. Traditionally, similarity-based
and rule-based systems have been used as distinct models to
capture conceptual representation. However, it seems implau-
sible that we do not flexibly deploy both systems. Whether
both systems can be used simultaneously to represent compo-
nents of a single concept is an open empirical question. One
example suggesting that the use of both systems is possible is
the concept of a ZEBRA, which looks like a horse but striped.
Using an artificial concept learning task, we test whether peo-
ple can combine similarity and rules compositionally in order
to represent concepts. Our results suggest that people are able
to compose similarity and rules when mentally representing a
single concept.
Keywords: concept learning, conceptual representation, simi-
larity, rules, generalization

Introduction
Concepts are at the core of how humans develop an under-
standing of the world around them. That being said, exactly
how concepts are represented in the human mind has long
been debated within the field of cognitive science (Margolis
& Laurence, 1999). Traditionally, at least two distinct sys-
tems have been used to describe conceptual representation
(Hahn & Chater, 1998): similarity (e.g., Shepard, 1980;
Newell & Simon, 2007) and rules (e.g., Nosofsky, 1984).
Research in the conceptual representation domain often at-
tempts to construct a core distinction between these two sys-
tems. Given the assumption that we use both similarity- and
rule-based representational systems, it still remains an open
question as to how the systems interface within a single con-
cept. How do we represent concepts such as ZEBRA, which
can easily be and is readily described as being like a horse but
striped, where the concept seems to require both similarity-
(”like a horse”) and rule-based (”striped”) components?

Both similarity- and rule-based systems have much to of-
fer in terms of explanatory power. Similarity-based systems
rely heavily on memory for perceptual features. In similarity-
based systems, previously seen examples are sometimes rep-
resented as a noisy feature vector. This format has two dis-
tinct advantages. First, features do not need to co-occur de-
terministically in order for some abstraction to be made. As a
result, characteristic features of concepts are stored and used
to aid recognition. Second, similarity-based systems flexibly
handle partial matching during generalization tasks—i.e. a
novel item does not need to strictly match the abstract repre-
sentation of a given category on all dimensions in order to be
grouped into that same category. This is a desirable feature
considering the rampant inconsistencies in our world (e.g.,
most but not all chairs have legs).

Alternatively, rule-based systems (e.g., Feldman, 2000)
typically handle discrete feature values. Rules of this system
naturally compose to generate increasingly complex but pre-
cise rules. Additionally, rules are easily verbalized making
them prime for linguistic transmission. In generating rules,
linguistic labels have been shown to affect how people divide
the mental space into categories. Language facilitates how
information is stored by highlighting perceptual distinctions
in the world and serving as a cue to attend to that distinction
and form a category (Waxman & Markow, 1995). In color
space, it has been shown that a distinction in blue color labels
that is present in Russian but not in English contributes to dif-
ferences in perceptual color discrimination tasks (Winawer et
al., 2007). These findings provide evidence that language can
affect perceptual categorization.

Research on cognitive development suggests that the use
of these two systems may transform over time when acquir-
ing a given concept (Werner, 1948; Bruner, Olver, & Green-
field, 1966; Kemler, 1983). Children initially learn using a
similarity-based system, but later develop a rule-based repre-
sentation. The early similarity-based system allows a child to
make a judgment without explicitly knowing the relevant fea-
tures (Kemler, 1983). For example, a child can judge holis-
tically whether an object is a diamond based on its similar
appearance to previous diamonds seen. The child does not
need to understand the concept of an equilateral polygon (i.e.
all sides on a figure being equal) in order to make this judg-
ment. However, after learning about equilateral polygons, a
child will be able to make better generalization judgments on
novels objects that are not visually similar to prototypical di-
amonds.

Additional hybrid theories exist including RULEX
(Nosofsky, Palmeri, & McKinley, 1994). In RULEX, the
model learns rules and exceptions to those rules. While sim-
ilarity is not explicitly implicated, the flexibility provided by
the exception allows for the model to capture similarity based
generalizations. Additionally, probabilistic rule-based sys-
tems capture a more expansive set of conceptual components.
Goodman, Tenenbaum, Feldman, and Griffiths (2008)’s ratio-
nal rules model represents a distribution over rules, which can
provide gradient beliefs in each possible rule. Heit and Hayes
(2011) adopted a model similar to the rational rules model
that explicitly incorporates the notion of similarity embodied
by the Generalized Context Model (Nosofsky, 1988) as a rule
in order to explain inductive reasoning behavior.

In the current literature, it is unclear how the evaluation
of gradient features is or could be incorporated in rule-based
models. If the evaluation of gradient features can be inte-
grated into a compositional system, will this component cap-



ture patterns of similarity, such as the preservation of con-
tinuity within the representation? Our goal in this paper is
to see whether people freely combine gradient similarity and
discrete rule-like features as components of a larger compo-
sitional system. We conducted an experiment to examine
whether similarity- and rule-based systems can compose to
represent a single concept with both continuous and Boolean
dimensions. We argue that both similarity and rules are nec-
essary and can be combined to form mental representations.

Experiment
To investigate whether learners can compose similarity- and
rule-based mental systems, we used an artificial concept
learning paradigm. Participants were asked to make gener-
alization judgments (i.e. whether the label applied to a new
item) for a novel concept, fep. Critically the concept being
learned contained two relevant features: one that was gra-
dient (i.e. not readily discretized into categories or easily
described with language) and one that was binary (i.e. tak-
ing discrete categories and easily described with language).
Thus, we assumed that the continuous feature would elicit
the use of similarity-based representations and the Boolean
feature would elicit the use of rule-based representations. If
participants retain a gradient representation in concepts com-
bining both features, we can conclude that people can com-
bine similarity- and rule-based representations composition-
ally and flexibly. However, participants may not necessarily
retain a gradient representation: they could discretize the con-
tinuous feature by, for instance, “coding” the feature as a new
binary feature for “similar enough.” If participants do this, it
would suggest that they are not maintaining the gradient sim-
ilarity information within the compositional system. A third
possible outcome is that participants may not combine sys-
tems at all—they may generalize along either the continuous
or the discrete dimension, suggesting that participants resist
combining systems.

Participants
We recruited 106 participants on Amazon Mechanical Turk.
Three participants were excluded because of their failure to
complete the task. Two other participants completed the non-
linguistic task but failed to complete the linguistic task. These
participants’ non-linguistic data was included in the analysis.

Stimuli
The stimuli consisted of 100 unique images, each of which
was manipulated along two features: shape and fill color.
Along the shape dimension, there were 50 shapes. Shapes
were generated using a custom python script and were out-
putted to an SVG file1. The curvature of the arcs defining
the shapes were determined by a normal distribution and the
coordinates of each of the four vertices were determined by
independent uniform distributions. That is, along both the
x- and y-axes for each of the four vertices, there were three

1Code avalilable at github.com/loey18/Oey Zebra/

Figure 1: Function used to generate the stimuli shape.
Bernoulli distribution followed by a uniform distribution is
used to determine what shape is generated. Both uniform dis-
tributions share the same shape at the “edge value” (in red
box).

Figure 2: Normalized similarity ratings for each of the 50
stimuli shapes. Slope in mean of similarity ratings indicates
that the similarity of the shapes is perceived gradiently.

points marking the extreme edges of two uniform distribu-
tions, where one edge was shared among the distributions
(Figure 1). This generating function lends itself to forming
a prototype, where the shared distribution edge along each
vertex acts as this prototype.

Along the fill color dimension, the stimuli were either filled
in black or white. This was manipulated by manually adjust-
ing the fill color, creating both a black and white filled image
for each shape. Thus, we expect that shape will be perceived
as a gradient feature based in similarity to a prototype, and
fill color will be perceived discretely as a binary feature com-
monly studied in Boolean concept learning.

In order to measure how similarly the gradient feature
(shape) would be perceived, we first collected norming data
(n = 30). We asked participants to adjust a slider in order
to rate each shape’s similarity to a single shape acting as
the reference point. The reference point used was the pro-
totype described above (Figure 1). The fill color was held
constant across all shapes. We then normalized each of these
ratings relative to the given participant’s responses and used
the means of these normalized z-scores as the similarity mea-
surement for a given shape (Figure 2). The reference shape
when rated in comparison to itself is represented by the far
right bar and has the highest similarity rating, acting as a san-
ity check.



Figure 3: An outline of the experimental setup: (left) the gen-
eralization trials where participants respond to which novel
shapes are considered feps; (right) the verbal description task
with wugs and daxes labeled for potential use in verbal de-
scriptions.

Procedure

There were two parts to the primary experiment: a general-
ization task and a verbal description task (Figure 3).

Generalization Judgment (Non-Linguistic) Task. Par-
ticipants were shown exemplars of a novel object fep, analo-
gous to how real-world learners might acquire a lexical label
(e.g. “kangaroo”) by exposure to examples. Participants saw
a total of six fep exemplars incrementally over six trials. The
fep exemplars were white and similar to the prototype refer-
ence shape used to collect the norming data. The exemplar
feps were consistent across all participants; although the or-
der in which these exemplars were displayed was randomized
for each participant.

On each trial, participants were shown a labelled exem-
plar of a fep, which remained on the screen for the remainder
of the experiment to reduce memory load. Participants were
then shown ten novel test items that were sampled randomly
without replacement from the full stimulus set and asked to
indicate which were feps by checking yes or no (Figure 3).
Participants received feedback after each generalization judg-
ment, being shown either a green check mark if correct, or a
red X if incorrect. For the generalization stimuli, feps were
the 23 white filled shapes that received the highest similarity
ratings in the norming study. On average, participants saw 2.8
feps per trial (including the exemplar), none of which were
the fep exemplar itself. Participants made a generalization
judgment on each of the 60 test items. Since the total set of
stimuli consisted of 100 items, and participants were exposed
to the six exemplars and 60 test items, participants only saw a
subset of the total stimuli. After labeling the feps, participants
were shown additional examples.

Verbal Description (Linguistic) Task. At the end of the
generalization task, participants were asked to provide a ver-
bal description of a fep by typing into a text box. To do so,
participants were provided with two novel labelled images to
act as potential terms in their descriptions, though they were
instructed that they were not required to mention these. One
of the objects (wug) was white filled but dissimilar in shape
to a fep. The other (dax) was black filled but had a similar
shape to a fep (see Figure 3).

Figure 4: Prediction graph for each of the four proposed hy-
potheses. The x-axis represents similarity on a scale of −2.5
to 2.5. The y-axis represents the percent of instances that a
given item is generalized to (i.e. a test item is predicted to be
a fep). The line types represent the items with the different
discrete features.

The description task served two purposes. First, the task
acted as a sanity check to verify that participants did not in-
duce the same set of rules defining the boundaries of the fep
shape space. If participants induced some set of hard and fast
rules to capture which items were labelled as feps (e.g. flat
top and curved bottom), this would suggest that subjects had
discretized the continuous space and therefore not combined
representational systems. If they did do not articulate these
types of rules, this task allows us to use the linguistic data
to examine participants’ likely representations. For example,
participants’ descriptions may suggest a similarity-based rep-
resentation through the use of terms like “like” and “similar
to.” In general, one can examine the frequency of modal or
gradable language (Lassiter, 2017) used in the descriptions in
order to distinguish between a similarity function and a prob-
abilistic rule.

Possible Outcomes
Generalization Judgment (Non-Linguistic) Task. We pri-
marily considered four potential outcomes from the non-
linguistic experimental task. Figure 4 shows what each pos-
sible outcome predicts about how generalization should scale
with similarity and the discrete feature. In (a)-(b) participants
may only generalize their concept of a fep along one of the
two critical features, suggesting that people use the represen-
tation systems separately: (a) Participants may exclusively
generalize along the Boolean feature (i.e. black versus white
fill), suggesting the use of a rule-based representation but not
gradient similarity (Figure 4, top left). (b) Similarly, partic-
ipants may exclusively generalize along the gradient feature
(i.e. shape), suggesting the use of a similarity-based repre-
sentation (Figure 4, top right). Alternatively, in (c)-(d) par-
ticipants may consider both the Boolean and gradient feature
when making generalization judgments: (c) Boolean and gra-
dient features may be considered when making generaliza-
tion judgments; however, the gradient feature may in fact be



evaluated along a discretized rule (Figure 4, bottom left). Par-
ticipants may align on some threshold to indicate an item is
“similar-enough” to some other item, and items below that
threshold are not “similar-enough.” In other words, within
such a compositional structure, similarity would be mapped
onto rules. (d) If the Boolean feature is evaluated using a
rule-based system and the gradient feature is evaluated using
a similarity-based system, we would predict results similar
to the bottom right graph in Figure 4, where the effect of
gradient feature will be evaluated differently, depending on
the Boolean feature. In other words, similarity would pre-
serve continuity in conjunction with discrete features within
a larger compositional structure.

Results
Figure 5 shows the experimental results of the generalization
judgments from the last three trials. The x-axis shows the
normed similarity ratings for each test item shape. The y-
axis shows the proportion of responses that answered ”yes”
to the question of whether a given test item was also a fep,
which varied from 0 to 1. The different colors of the data
points represent the fill color of the test item. Critically these
results closely resemble the predicted results in the bottom
right of Figure 4 (d), where subjects show a strong continuous
gradient for white items but not for black items. This suggests
that participants are evaluating both the discrete and gradient
feature compositionally, and in assessing the gradient feature,
a similarity-like continuous representation is preserved.

We assumed that participants would develop a represen-
tation of the concept in the first half of the experiment (i.e.
first three trials). We examine the learning aspect separately
below.

We also used a logistic mixed-effects regression model
to analyze the data from the last three trials. The response
variable was whether subjects generalized (yes/no), predicted
from the similarity and object fill. Critically, the model exam-
ined whether there was an interaction between stimuli simi-
larity rating on shape and the stimuli’s fill color. The fill color
independent variable was dummy coded, with black fill as the
referent level (black = 0, white = 1). Additionally, the model
contained by-participant, by-test item, and by-exemplar ran-
dom intercepts. The data was analyzed in R using the glmer
function of the package, lme4 (Bates, Mächler, Bolker, &
Walker, 2014).

Table 1 displays the coefficient estimates and p-values from
the model. We found significant effects of fill, similarity, and

Estimate z-score p-value
Intercept −3.056 −15.466 p < 0.0001

Fill 3.065 14.067 p < 0.0001
Similarity 0.739 3.059 p < 0.0030
Interaction 1.231 3.596 p < 0.0004

Table 1: Regression parameters of logistic mixed-effect re-
gression model.

Figure 5: Results from the artificial concept learning experi-
ment across participants over the last three trials of the task.
There is an interaction between the Boolean feature (object
fill color; represented as point color) and perceived similarity
(shape; represented on x-axis) affecting generalization judg-
ments (y-axis).
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Figure 6: Predictions for individuals generalization probabil-
ity as a function of similarity for black and white stimuli. The
gradient slope for similarity among the white images, sug-
gests participants do not have step-like thresholds for similar-
ity.

the interaction between fill and similarity (Figure 5). These
results suggest that people are able to combine similarity- and
rule-based systems when developing a representation for the
concept fep since they not only take into account both fea-
tures, but how they treat each feature is dependent on the
other feature, as reflected by the interaction.

In examining the mental representation of the gradient fea-
ture, it was important that we assess whether participants
evaluate the feature continuously or discretely. Showing that
aggregated generalization judgments along the gradient fea-
ture are linear provided supporting evidence for a continu-
ous representation. However, we might also see a linear pat-
tern if participants had individually-variable, discrete simi-
larity thresholds. To address this alternate hypothesis, we fit
a logistic regression for each participant individually. The
model predictions are visualized in Figure 6, which shows
each individual subjects’ classification curve as a function of
the similarity. While the judgment is somewhat qualitative,
we do not find sharp step-wise functions reflecting discrete
similarity thresholds within individuals.

One surprising result that is hinted at in Figure 5, but con-



firmed in our regressions, is that there is a significant effect
of similarity within the black filled test items. One potential
explanation for this is that participants are not learning the
rule over the fill color feature to the extent that we expected
they would. There may still be a belief in the relevance of
shape similarity, even when the evidence should suggest that
similarity should be irrelevant given the rule. However, it is
also important to note that the slope is relatively flat. As the
participant pool is large (n = 103), we may be detecting small
effect sizes.

Learning. The qualitative pattern of category learning
over the course of the experiment’s six trials is shown in Fig-
ure 7. Each panel corresponds to generalization judgments in
a given trial.

Data points in the initial trials are more scattered, but over
the course of these first few trials, the trend shown in Figure
5 begins to emerge. In our data, by around the third trial,
participant data is beginning to show a positive slope for the
white filled items and a different, flatter slope for the black
filled items. Interestingly, the initial trials seem to show gen-
eral positive sloping trends between generalization judgments
and similarity ratings across both fill colored items. This is
indicative of a shape bias (Landau, Smith, & Jones, 1988)
where participants appear to notice the effect of shape before
the effect of fill color. Additionally, the slope of the white
filled items are shifted upward relative to the black filled
items, indicating a smaller tendency to generalize to items
that share the same color as well very early. These catego-
rization patterns in the initial trials indicate a similarity-based
representation, which is consistent with the view that similar-
ity is free, i.e. similarity representations are quickly learned.

Language. We predicted that participants would describe
a fep using language of both rules and similarity. Given our
verbal prompts which provided additional labels participants
could use, one such predicted verbal response would be “A
fep is white and like a dax.” An alternative is that participants
could exclusively use similarity-like language (e.g. “A fep
is like a dax in shape and like a wug in color.”) or use one
dimension but not another.

The verbal responses were individually hand-coded by the
first two authors into mutually exclusive categories (i.e. yes,
feature is present vs. no, feature is not present) along two
dimensions (i.e. similarity-like and rule-like language). The
inter-rater agreement was measured at a Cohen’s kappa co-
efficient of 0.678.2 The discrepancies were debated, and a
post-reconciliation kappa coefficient was found to be 0.989.
The results of this classification are presented in Table 2.

As predicted, we find that people do in fact use both rules
and similarity-like language (e.g. “A fep is more like a dax but
white.”), and this occurred in 36.6% of responses. It is also
important to consider that 86.1% of participants using rules
in their language, suggesting that rule-based representations
are preferred in language. A key contributing factor is that

2The main discrepancies were about response relevance to the
task, as opposed to the presence of similarity- or rule-like language.

¬Similarity Similarity Total
¬Rules 8 6 14
Rules 50 37 87
Total 58 43 101

Table 2: Counts of the 101 participant verbal descriptions,
categorized by uses of similarity and rule representations in
language.

language is often considered to be rule-like and discrete; thus,
it may be unsurprising that the majority of participants use
rule-like language in their descriptions.

There is one prominent limitation to our verbal descrip-
tion task: Our target concept was not designed to be inter-
related (Goldstone, 1996) and so including the moduli (i.e.
wug and dax) with the prompt may have increased compar-
isons between objects even when unnecessary, as expected
by Gentner and Medina (1998). Some participants were re-
dundant, using both rules and similarity to describe the same
feature. This occurred more often along the discrete feature
dimension (e.g. “A fep is white like a wug”), and was less
frequent for the continuous feature dimension (e.g. “It has a
similar shape to a dax; with an indentation on the bottom left
and straight lines on the top and bottom right”).

These results are not surprising. The rule based component
(i.e., white) is easy to encode and vital to convey the correct
concept; whereas, the similarity based component is equally
as costly to explain in terms of rules or similarity. Addition-
ally, participants in our task were biased to generalize on the
basis of shape. Given this bias, it might be more informa-
tive to convey the fill dimension than the shape dimension.
Future research will have to tease apart how inductive bias
and task demands give rise to verbal descriptions, including
how effective participant descriptions convey the information
required to identify feps and complete our task. In addition,
our verbal description task occurred at the end of the exper-
iment. Future work should examine how verbal descriptions
compare and contrast across stages of varying exposure.

Discussion
Our results have demonstrated that people are able to develop
a representation for concepts with both discrete and gradi-
ent features. Furthermore, people’s representations seem to
compose rule- and similarity-based representation systems,
reflected both in their generalization patterns and verbal de-
scriptions of these concepts.

Thus, these results have provided further evidence in sup-
port of hybrid theories of representation. Not only can repre-
sentation transform from one system to another, but both sys-
tems may be used compositionally when necessary to repre-
sent a single concept. By examining representation at the fea-
ture level, we may examine how two competing systems may
not only co-exist but also act to complement one another, as
suggested by Heit and Hayes (2011). Future research should
explore the factors motivating the use of each system, perhaps
is different domains. Where both a purely rule-based and a



Figure 7: Results of the generalization task broken down by amount of data provided to learners (facets). With increasing data,
the interaction slope difference between black- and white-filled items becomes more pronounced.

purely similarity-based system may fail to capture a conjunc-
tive discreteness and gradation of the features, having access
to a compositional system such as this points to the flexibility
of the human mind’s ability to grasp a large variety of con-
cepts.

Note that in spite of our findings, there still remain hard,
open questions about how similarity is measured and what
exactly it is. Similarity is not simple; for one, it is depen-
dent on context (Tversky & Itamar, 1978). Similarity itself
may be a measure that is used after all rule-based algorithms
have been exhausted in evaluating a given concept. It may
also be the case that similarity can be characterized as a prob-
abilistic function in a stochastic representation language that
is both rule-like and supports gradience through probability
calculations (e.g., as in Church: Goodman, Mansinghka, Roy,
Bonawitz, & Tenenbaum, 2012), suggesting a natural unify-
ing framework.

Conclusion
In summary, our findings have demonstrated that people flex-
ibly combine rule- and similarity-based representations com-
positionally within a single concept. Although both systems
are often compared and contrasted with one another, our data
provides evidence for a unifying system that composes simi-
larity and rules as components, depending on the target con-
cept to be represented. Models of compositionality over com-
ponents to describe mental representation contributes to a cur-
rent trend in cognitive science toward the theory of a language
of thought (Fodor, 1975).
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