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Abstract

Recently the principles of efficient communication have pro-
vided useful characterizations of semantic typology: the diver-
sity of attested languages can be described by competing pres-
sures for simplicity and informativeness. While this approach
has achieved success in several semantic domains, the formal-
izations used to define complexity across domains vary. In
this note, we list the conditions under which the two main ap-
proaches of defining complexity: channel rate and description
length, unify and, thus, conclusions about near-optimal com-
municative efficiency generalize across formalizations. We il-
lustrate this equivalence using simulations of communicative
efficiency for Boolean concepts. We round out this note dis-
cussing the (un)importance of description languages and the
limits on generalizing this equivalence for other behavioral tar-
gets for explanation.
Keywords: semantic typology; ideal learner; efficient com-
munication; (algorithmic) information theory

Introduction
There is considerable diversity in how languages of the world
carve up semantic domains. For example, a Mexican Span-
ish speaker would make a distinction between celeste (sky
blue) and azúl (blue); whereas, an English speaker cannot
make this distinction with a single basic color term. In the
past decade, the diversity in semantic typology has been char-
acterized as efficient communication (for review see, Kemp,
Xu, & Regier, 2018). In evolving communicatively efficient
linguistic systems, languages must trade-off a pressure to be
simple yet successful for communication—i.e., informative.
By virtue of this trade-off, there are several optimal commu-
nication systems that depend on the extent to which a lan-
guage weights simplicity vs informativity. Attested linguis-
tic systems are spread across the optimal frontier of efficient
languages. Thus, the diversity in semantic typology is ex-
plained as efficient communication with each language differ-
ently weighting pressures for simplicity vs informativeness.

The success of the communicative efficiency account has
been demonstrated in multiple semantic domains, with at-
tested languages being near optimal with respect to this trade-
off (Kemp & Regier, 2012; Y. Xu, Liu, & Regier, 2020; Za-
slavsky, Kemp, Regier, & Tishby, 2018; Steinert-Threlkeld,
2021); however, the precise formalization of the simplicity-
informativity trade-off has varied across analyses, (for review
see, Mollica & Zaslavsky, in press), with some analyses oper-
ationalizing complexity in terms of description lengths (e.g.,
Kemp & Regier, 2012) and others adopting the well stud-
ied information-theoretic framework, Information Bottleneck

(IB; Tishby, Pereira, & Bialek, 1999; Zaslavsky et al., 2018).
This begs a question, do the results of one approach hold for
the other approach? That is, are the optimal languages in the
IB sense, optimal in the description length approach?

In this note, we present the conditions under which there is
a sufficient equivalence for claims of near-optimality to hold
between both description length and information-theoretic
notions of the simplicity-informativeness trade-off. We note
that the Information Bottleneck is a form of compression, a
Rate-Distortion trade-off under Shannon (1948)’s informa-
tion theory. We show that under reasonable assumptions
and with few limitations, the description length approach is
also a form of compression under Kolmogorov (1963)’s al-
gorithmic information theory. Specifically, the description
length complexity is equivalent to Kolomogrov’s structure
function, which in expectation has an asymptotic equivalence
to the Information Bottleneck (Grunwald & Vitányi, 2004;
Vereshchagin & Vitányi, 2004). The upshot is that the results
of communicative efficiency analyses are preserved across
both approaches. We will illustrate this using simulations of
communicative efficiency for Boolean concepts. Addition-
ally, we will address the un-importance of the choice of de-
scription language for communicative efficiency analyses and
contrast it to the clear importance of description language
in anthropological explanations (e.g., Goodenough, 1956),
concept learning/generalization (e.g., Goodman, Tenenbaum,
Feldman, & Griffiths, 2008) and ideal learning models (e.g.,
Mollica & Piantadosi, 2022).

Equivalence of Formalization
Let us start with the intuitions.

Information theory concerns the transmission of informa-
tion across a channel. Under Shannon (1948)’s theory, com-
munication is the the encoding of information from a source
distribution into a code that is transmitted across a (possi-
bly noisy) channel and decoded at a destination (Figure 1a;
Shannon, 1948). Information is defined as the amount of sur-
prise a source message conveys relative to other candidate
messages1. Efficient communication balances the complex-
ity of encodings–i.e., the complexity of word-meaning map-
pings and the vocabulary size, against the amount of com-
munication error–i.e., the distortion between source and des-
tination messages. Efficient communication is, thus, a com-

1As a result, the content and even the representation of source
messages are irrelevant to Shannon’s information theory.



Figure 1: a) Shannon (1948)’s model of communication. Dashed lines emphasize the relationship between the model and the pressures for
simplicity and informativeness. b) Shannon’s model maps to human communication, where a speaker has source meanings (represented as
probability distributions over the semantic domain) encoded into words, which allow listeners to decode an intended meaning. c) Consider
an infinite sequence of pairs of meanings (colored shapes) and words (A or B). The description of this sequence is given by a model (in black
box) that assigns a number to each unique element in the sequence, and an encoding of the sequence that indexes each element (number under
the sequence). d) We can consider a different model that captures the regularities between word-meaning pairs and encode the sequence under
this model. e) Contrast a model where indexing is determined by explicitly enumerating the sequence (e.g., word’s extensions) with a model
that generates indices following a description language (akin to a word’s intension).

pression of source meanings onto words that minimizes the
expected distortion with respect to the source distribution. As
the source distribution is often chosen as the communicative
need of the message, efficient communication is ecologically
rational. Shannon’s theory is a useful model of human com-
munication (Figure 1b).

Algorithmic information theory concerns the encoding of
information within a mathematical object. Imagine a source
distribution and encoder generates an infinite sequence of
meaning-word pairs. The algorithmic information, or Kol-
mogorov complexity, of this sequence is the length of the
shortest program that generates exactly this sequence. As a
worst case scenario, there is no way to describe the data that is
more compact than simply listing the data itself in full (Figure
1c). However, if there are regularities in the sequence (e.g.,
a consistent relationship between words and meanings), then
we can often find a program that generates the sequence with-

out having to fully specify the sequence. As a trivial reduction
in the program size, we can list all possible word-meaning
pairs and then encode the sequence in terms of the index
of those combinations (Figure 1d). If the set of all possible
word-meaning pairs is small, this may be sufficient; however,
if the set of word-meaning pairs are large and word-meaning
mappings are non-arbitrary, we might be able to produce a
shorter program that describes their generation–i.e., the in-
tensional semantics (Figure 1e). Efficient encoding of the
meaning-word sequence generated by a source and encoder
is compression of the regularities between words and mean-
ings to minimize both program length and encoding costs.
Algorithmic information theory is a useful model of human
learning. In fact, it has been applied directly to language ac-
quisition (Chater & Vitányi, 2007; Hsu, Chater, & Vitányi,
2013) and underlies ideal learning models of cognitive devel-
opment (Ullman & Tenenbaum, 2020).



Now, both approaches are interested in finding optimal en-
codings of the semantic domain that are simple and infor-
mative. Nonetheless, the target of optimization in both ap-
proaches is different. IB models optimize the encoding of
word-meaning mappings, where meanings are fixed distribu-
tions over the semantic domain. In contrast, the algorithmic
Rate-Distortion fixes word-meaning mappings as one-to-one
and optimizes the encoding of sets of elements in the seman-
tic domain, i.e., a word’s extension, into meanings.

A more formal treatment might help clarify these issues:
First, let’s lay out the IB objective function. Then, we will
outline the description length approach currently used in ef-
ficient communication approaches to semantic typology. Fi-
nally, we will demonstrate how a few assumptions can trans-
form the description length approach to the Kolmogorov
structure function.

Information Bottleneck. Efficient communication for se-
mantic typology is primarily concerned with source-coding
(Zaslavsky et al., 2018). That is, efficient languages should
be simple codes that retain all the relevant information. As
noted above, simplicity and informativeness will trade-off as
simpler codes necessarily lose information. In the IB ap-
proach for semantic typology, speaker meanings m are en-
coded into words w which are recovered as listener meanings
m̂. Meanings, themselves, are probability distributions over
elements u in a semantic domain. Complexity is measured
as the amount of information shared between meanings and
words I(M;W ). Informativeness is measured as the expected
distortion between speaker and listener meanings, where dis-
tortion is defined as the KL Divergence E[KL(M|M̂)]. The IB
objective function is:

Fβ[q(w|m)] = I(M;W )−βE[KL(M|M̂)], (1)

where q(w|m) is the encoder of meanings into words and β is
the trade-off parameter determining the relative importance
of simplicity vs informativeness.

One difference between the description length and the IB
approach is that IB allows for a source meaning to map to
multiple words; whereas, the description length approach
forces a one-to-one mapping between words and meanings.
We can integrate this deterministic word-meaning mapping
assumption into the IB model by changing our complexity
term (Strouse & Schwab, 2017). The IB complexity can
be decomposed into two terms I(M;W ) = H(M)−H(M|W ),
the expected information content of meanings H(M) and
the conditional entropy H(M|W ), which accounts for non-
determinism in word-meaning mappings. Assuming that
words and meanings are one-to-one mapped, the conditional
entropy is 0 and thus, we have the deterministic IB objective
function:

Fβ[q(w|m)] = H(M)−βE[KL(M|M̂)]. (2)

Description Length. The description length approach de-
fines the meaning of a word Mw as a description of the word’s
extension Mw ⊆ U . We can think of this description as an

encoding and denote the encoding function as E . For exam-
ple, the kinship domain can be encoded using a first-order
logic description language with predicates for genealogical
relationships (Kemp & Regier, 2012). Complexity is defined
as the length ℓ of the shortest description of a word’s exten-
sion ℓ(E(Mw)). For example, BROTHER could be encoded
as ∃.z f emale(z)∧ parent(z,x)∧ parent(z,y)∧male(y); how-
ever, this is not minimal as the f emale(z) could be removed.
Similar to the IB approach, informativeness is defined as the
communicative cost between a speaker and listener KL[M|M̂].
Thus, the description length objective function is:

argmin
E(Mw)

ℓ(E(Mw))+KL[M|Mw]. (3)

Now, there are three assumptions that we need to make in
order to show equivalence between Equation 3 and the Kol-
mogorov structure function. First, we need to assume that in
a given communicative interaction, speakers have a unique
intention u in mind (see Regier, Kemp, and Kay (2015) for
a similar assumption). In this case, the informativeness term
reduces to − logP(u|m̂) and Equation 3 is identical to the well
studied, two-part code minimum description length objective
function (Rissanen, 1978):

argmin
E(Mw)

ℓ(E(Mw))− logP(u|m̂), (4)

where the first terms corresponds to the encoding of the
meaning and the second term corresponds to the encoding of
the data under the meaning.

Second, we need to assume that the description language of
the model is expressively complete for the domain—i.e., the
description language can encode all possible patterns of data.
This assumption is easily met by and, often, a desideratum
of analyses using description languages (e.g., Goodenough,
1956). Still, we include it for the sake of completeness. If
the description language is complete and we have found the
minimum description length, then ℓ(E(Mw)) is a relaxed Kol-
mogorov Complexity K(Mw).

Finally, we need to assume that the recovered meaning dis-
tribution over the extension of a word is uniform p(u|m̂) =
|Mw|−1. From the perspective of a communication system
analysis, this assumption is probably the least well motivated.
Usually, we have some idea about the communicative need
of individual elements of the universe and would incorpo-
rate that information into our analysis. In this regard, assum-
ing a uniform distribution is akin to ignoring what we know
about communicative need. However, from a learning per-
spective this assumption is well motivated as a size-principle
likelihood, which tracks how humans use data when learn-
ing (Tenenbaum, 1999; F. Xu & Tenenbaum, 2007; Gweon,
Tenenbaum, & Schulz, 2010).

If we make these three assumptions, then Equation 3 can
be rewritten as the Kolmogorov structure function (Grunwald
& Vitányi, 2004):

h({u ∈ Mw}) = K(Mw)+ log |Mw|. (5)



Figure 2: Assumptions for the Shannon communication model for our Boolean universe. The top panels show the source probability for
the meaning corresponding to each element in the domain, represented as Boolean feature vectors. The bottom plot shows the meaning
distributions p(u|m), where each facet represents a different meaning.

1 Word-meaning mappings are deterministic.
2 Speakers have unique intentions.
3 The description language is expressively complete.
4 The recovered meaning distribution is uniform.

Table 1: Assumptions for Equivalence of IB and Description
Length Approaches

When taken in expectation over the source domain, the Kol-
mogorov Structure Function 5 is asymptotically equivalent
to Shannon’s Rate-Distortion Theory (Grunwald & Vitányi,
2004). To summarise, the assumptions under which this
equivalence hold are enumerated in Table 1. At face value,
the equivalence between the two approaches is clearer by
noticing that the informativeness term in Equation 2 and
Equation 3 are identical and that under a Shannon-Fano code–
i.e., a description language with ℓ(E(m)) = − log p(m), the
entropy of a source distribution is equivalent up to a constant
with the expected Kolmogorov complexity:

H(M) =−∑ p(m) log p(m)
+
= ∑ p(m)K(m). (6)

Case Study: Communicating Boolean Concepts
To illustrate this equivalence, we will show that the opti-
mal deterministic IB frontier is replicated under a description
length analysis. Let’s consider a communication system for

the semantic domain of Boolean concepts with four features.
To use the IB to calculate the frontier of optimal languages,
we need to specify the source distribution P(m) and the mean-
ing distributions P(u|m). For illustration, we will cross two
assumptions about source and meaning distributions (Figure
2). We will consider a Zipfian biased source and a capacity-
achieving source, similar to Zaslavsky et al. (2018)2. We will
also consider meanings that are governed by the semantics
P(u|mu∗) ∝ (0.75)n(0.25)4−n, where n denotes the number
of shared features between u and u∗, and meanings where
we have permuted the domain to flout the semantics (not
shown in Figure). Using Equation 2 we will compute the opti-
mal deterministic communication systems for each constella-
tion of our assumptions3. Additionally, we generated 10,000
random partitions to demonstrate how the near-optimality of
non-optimal communications systems is preserved across ap-
proaches.

For each of these systems, we look up the minimal descrip-

2As there are no attested languages for this fictional domain
we’re making up, we constructed a fictional evolutionary trajectory
of encoders and used them instead of attested languages. Impor-
tantly, this source retains the near uniform properties of capacity
achieving sources.

3Following standard practice, we use reverse deterministic an-
nealing to compute the IB frontiers. For the capacity source, the
β schedule was 2x for x from 4 to 0 by 0.005 increments. For the
Zipfian source, the β schedule was 2x for x from 8 to 0 by 0.005
increments.



Figure 3: Left panels contain IB frontiers (solid lines), optimal
deterministic encoders (black dots) and random partition encoders
shaded based on their distance from the optimal IB frontier. Right
panels depict the description length trade-off with the same deter-
ministic encoders and random partition encoders still shaded based
on their distance from the IB frontier. The dashed line is illustrative
of the description length frontier.

tion length4 from Carcassi and Szymanik (2023) for each par-
tition in the Boolean logic description language: conjunction,
disjunction and negation {∧,∨,¬} and calculate the commu-
nicative success. Figure 3 plots both the IB pareto-frontier
(left panels; solid line) and the translated description length
frontier5 (right panels; dashed line) with optimal determinis-
tic languages plotted as black points and random partitions
plotted with colors reflecting their distance to the IB frontier

4Carcassi and Szymanik (2023) calculated the minimal descrip-
tion length in terms of the number of logical operators used. We will
use those values here. Further, we will add the lengths of different
concepts rather than maximally compressing the logical formulas, as
under Kolmogorov complexity. To ensure robustness, we conducted
the analysis where we used Lempel-Ziv-Welch compression (Welch,
1984) on the formulas and our illustration holds, likely because there
is minimal overlap in most description languages.

5NB This frontier is purely illustrative. This is not the Kol-
mogorov structure function as we are not searching over all possible
descriptions. As a result, it is possible for some of the random lan-
guages to be below this line.

(red is closer; blue further). As can be seen, optimal deter-
ministic IB languages generally lie along the frontier under
either formalism.

Lacuna: Will efficient communication analyses
of semantic typology generalize across

description languages?
In cognitive science, there is a long history of strongly moti-
vating description languages for theory building. For exam-
ple, Feldman (2000) used Boolean Logic as a description lan-
guage for concept learning; whereas, Goodman et al. (2008)
and Piantadosi, Tenenbaum, and Goodman (2016) used first
order logic. Kemp (2012) has also argued for first-order logic
being an important description language for concept learn-
ing. Kemp and Regier (2012)’s analysis of kinship used first-
order logic with relationship primitives; whereas, Mollica and
Piantadosi (2022) uses compositional functions as the de-
scription language in their developmental account of kinship.
While description languages tend to be domain general, oth-
ers have motivated specific description languages grounded
in cognitive abilities, notably for describing numeral systems
(Y. Xu et al., 2020) and counting routines (Piantadosi, Tenen-
baum, & Goodman, 2012). It is generally held that choice of
description language reflects important hypotheses about the
underlying features to the semantic domain. For example, an-
thropology has long been interested in what the minimal set
of features an anthropologist must collect to understand kin-
ship systems (Goodenough, 1956). Therefore, there is good
reason to question whether results about near optimal com-
munication under one description language will generalize to
other description languages.

The answer depends on the description language. If the
description language is not capable of capturing any possible
input pattern6—i.e., not expressive, then we have no guar-
antees that the analysis will hold. Surprisingly, if the de-
scription language is expressive, then judgements of near-
optimality will generalize to any description language that is
also expressive, following Kolmogorov’s invariance theorem
(for similar argument see Chater & Vitányi, 2007). Sparing
technical details, the encoding of an extension can under any
expressive description language be translated into any other
expressive description language by writing a translation pro-
gram and appending it to every encoding. As the length of the
translation program is constant, it can be ignored in the opti-
mization7. As an illustration, Figure 4 shows the description
length frontier for the capacity-achieving source, Boolean se-

6Any possible input pattern does not necessarily mean every log-
ically possible input pattern. More frequently analyses are only con-
cerned with a theoretically constrained subset of all logically possi-
ble inputs. For example, most analyses of kinship are not concerned
with uniquely identifying every individual on a family tree. It will
be sufficient to demonstrate that description languages are equally
expressive on the set of all possible relevant inputs.

7It should be noted that the invariance theorem does not mean
that any description language can achieve the shortest description
for every concept, but rather no other description language could
compress every concept any better than a constant amount.



mantics analysis for four expressive Boolean logical descrip-
tion languages. As Carcassi and Szymanik (2023) explain,
there are 420 unique description languages of Boolean oper-
ators and this illustration holds for all of them.

While this is great news for communicative efficiency stud-
ies, where we are interested in the asymptotic efficiency of
the system, explanations of other behavioral phenomena (e.g.,
concept learning/generalization) can depend on the descrip-
tion language. For example, in ideal learner models, the de-
scription language is used as a simplicity bias for induction.
Thus, in the absence of data the preference of one concept
over another is the relative simplicity of the concepts’ de-
scriptions in a fixed description language. The relative com-
plexity of two concepts can flip under different description
languages (e.g., see Table 2). In fact, Carcassi and Szy-
manik (2023) studied exactly this issue when evaluating dif-
ferent experimental designs for assessing the recoverability of
a description language, or Language of Thought (LoT). Their
take homes are: 1) experimental designs need to measure
the learning trajectory to have modest success recovering de-
scription languages from data because trajectories emphasize
the relative order of descriptions; and 2) if descriptive lan-
guages preserve the relative orderings of descriptions across
languages, the two languages are non-identifiable. This is a
long-acknowledged sticking point for using behavioral data
to distinguish between description languages as desired by
anthropology (Burling, 1964). The consequence is we need to

Figure 4: Description length trade-off plots for the capacity source,
Boolean semantics communication systems in four additional de-
scription languages. The dots represents the same encoders in the
top row of Figure 3; thus, the shading is the same across Fig-
ures/panels. While there are minor variations in the location of the
encoders across description languages, the general patterns of near
optimality are preserved. ALL BOOL uses all of the Boolean opera-
tors as well as the unary operator negation.

LoT Formula Length
{¬,∨} A= ¬(p∨ (¬r∨¬s)) 8

B= ¬(p∨¬(q∨ r))∨¬(q∨ (r∨¬p)) 15
{∨,↮,∼∧} A= p ↮ ((p∼∧ p)∼∧ (r∼∧ s)) 9

B= p ↮ (q∨ r) 5

Table 2: Different description languages (LoT) can change the rela-
tive complexity of concepts. Both A and B are concepts with equiva-
lent extension; however, in the disjunction and negation LoT {¬,∨},
A is simpler than B. Whereas in the disjunction, negative bicondi-
tional and negative conjunction LoT {∨,↮,∼∧}, B is simpler than A.
The Boolean features in the universe are denoted as p, q, r and s.

continue to strongly motivate our description languages and
to qualify our findings in these models to account for limita-
tions of the description languages.

Discussion

The goal of this note was to show that, under reasonable as-
sumptions (Table 1), efficient communication analyses of se-
mantic typology will generalize across formalizations. There-
fore, it’s fine to conduct whichever analysis is easier for the
available data. For example, when well motivated assump-
tions about communicative need and meanings are available,
IB is a solid formalization. Whereas when well-motivated
and easily searchable description languages for the domain
are available, the description length approach is appropriate.
That said, optimization is generally easier in the IB formal-
ization than in the description length one.

While choice of description language is not an important
factor in characterizing the asymptotic efficiency of com-
municative system, it is prudent to reiterate that description
language will matter for other behavioral targets, including
explaining evolutionary trajectories. Modelling communica-
tive pressures with information theory is akin to assuming
a Shannon-Fano code as the description language. In con-
trast, developmental/learning models often motivate descrip-
tion languages appealing to cognitive constraints on the se-
mantic domain (e.g., core cognition primitives; Piantadosi
et al., 2012) or on the process of searching for descrip-
tions/concepts (Bramley, Dayan, Griffiths, & Lagnado, 2017;
Fränken, Theodoropoulos, & Bramley, 2022; Gong, Gersten-
berg, Mayrhofer, & Bramley, 2023). As a result, the source
of the evolutionary pressures can make different predictions
for the evolutionary trajectory; though they can agree (e.g., in
the domain of color; Gyevnar, Dagan, Haley, Guo, & Mollica,
2022).

To those hoping to use communicative efficiency analy-
ses of semantic universals to inform description languages as
theories of mental representations, this note might be disap-
pointing, yet not condemning. Comparing description lan-
guages is still possible and is best approached by modelling
the developmental/learning trajectory following Piantadosi et
al. (2016) and Carcassi and Szymanik (2023).
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Sankhyā: The Indian Journal of Statistics, Series A, 369–
376.

Mollica, F., & Piantadosi, S. T. (2022). Logical word learn-
ing: The case of kinship. Psychonomic Bulletin & Review,
1–34.

Mollica, F., & Zaslavsky, N. (in press). Information-theoretic
and machine learning methods for semantic categorization.
Oxford University Press.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D.
(2012). Bootstrapping in a language of thought: A formal
model of numerical concept learning. Cognition, 123(2),
199–217.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D.
(2016). The logical primitives of thought: Empirical foun-
dations for compositional cognitive models. Psychological
review, 123(4), 392.

Regier, T., Kemp, C., & Kay, P. (2015). Word meanings
across languages support efficient communication. The
handbook of language emergence, 237–263.

Rissanen, J. (1978). Modeling by shortest data description.
Automatica, 14(5), 465–471.

Shannon, C. E. (1948). A mathematical theory of communi-
cation. The Bell system technical journal, 27(3), 379–423.

Steinert-Threlkeld, S. (2021). Quantifiers in natural lan-
guage: Efficient communication and degrees of semantic
universals. Entropy, 23(10), 1335.

Strouse, D., & Schwab, D. J. (2017). The deterministic in-
formation bottleneck. Neural computation, 29(6), 1611–
1630.

Tenenbaum, J. B. (1999). A bayesian framework for concept
learning (Unpublished doctoral dissertation). MIT.

Tishby, N., Pereira, F., & Bialek, W. (1999). The informa-
tion bottleneck method. In Proceedings of the 37th annual
allerton conference on communication, control and com-
puting.

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models
of conceptual development: Learning as building models of
the world. Annual Review of Developmental Psychology, 2,
533–558.
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