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Abstract

We introduce theory-neutral estimates of the amount of information learners know about how language
works in order to quantify the capacities of the inferential mechanisms that support language learning. We
provide estimates at several levels of English linguistic analysis: phonemes, wordforms, lexical semantics,
word frequency and syntax. Our best guess estimate for human knowledge of language is 12.5 million bits,
the majority of which is lexical semantics. Interestingly, very little of this information is syntactic, even in
our upper bound analyses. Generally, our results indicate the learners must extract, on average, nearly 2000
bits of information about how their language works each day of their early lives.



1 Introduction

One of the foundational debates about human language centers on an issue of scale: is the amount of infor-
mation about language that is learned substantial (empiricism) or minimal (nativism)? Despite theoretical
debates on the how much of language is or can be learned, the general question of the amount of information
that must be learned has yet to be quantified. Here, we provide an estimate of the amount of information
learners must extract in the process of language acquisition. We provide lower-bound, best guess, and upper-
bound estimates of this information, using a “back of the envelope” approach that is popular in physics.
During the testing of the atomic bomb, physicist Enrico Fermi famously estimated the strength of the bomb
by dropping scraps of paper as the blast passed. He noted that they were blown about 8 feet by the explosion
and announced out loud that the blast was equivalent to about 10,000 tons of TNT [1]—the true answer
was 18,000 tons, meaning Fermi’s crude experiment and quick calculation got the right answer to within
a factor of two. Similar back-of-the-envelope Fermi-calculations are commonly used in physics as a sanity
check on theories and computations.! However, such sanity checks are needed—although rarely applied—in
fields that suffer from under-constrained theories, like psychology.

We apply this approach of rough estimation in order to quantify a lower-bound on the number of bits
per day that language learners must extract and remember from their environments. While a substantial
literature has focused on the differences between nativist and empiricist approaches, when they are trans-
lated into the domain of information theory, nativism and empiricism may blur together. Specifically, a
constrained nativist space of possibilities with one set of learning biases may require the same number of
bits of information as an unconstrained, large space of hypotheses with another set of biases. Since we do
not know much about which language learning biases children have, theories about how the hypotheses are
constrained (or not) do not unambiguously determine the number of bits learners must store.

So, instead of debating nativism versus empiricism, we take up the challenge of quantifying how much
information of language must be learned in order to inform the underlying acquisition theories. To avoid
dependence on a particular representation scheme, we focus on the possible outcomes of learning a language,
i.e., we compute the number of bits required to specify the target outcome out of a plausible space of
logically possible alternatives. To avoid dependence on a particular learning algorithm, we study the problem
abstractly without reference to how learning works, but rather based on how much a relatively unbiased (e.g.
maximum entropy) learner would have to store.

Our study is inspired by prior work which has aimed to characterize the capacity of human memory.
Early on, memory capacity was approached from a neuroanatomical perspective. Upper bounds on memory
capacity have been estimated via the number of synapses in cortex (10! bits) or the number of impulses
conducted in the brain across a lifetime (102° bits) [2]. More recently, bounds for information transfer
in neural coding have been estimated using information theoretic techniques [3]. Working from behavioral
performance, Landauer [4] used a variety of techniques to estimate the number of bits of information humans
must have in memory in order to show a given level of task performance. In one example, he converted
accuracy in a recognition memory task to bits by imagining that each image was stored using a random
code. This technique has been used recently by [5] in a large-scale empirical study, which estimated that
human memory could encode 23 unique items. Even more recently, [6] estimated 4 and 6 year old children’s
memory capacity to be 21943 unique items. Strikingly, both of these estimates lie within Landauer’s estimated
range of 10-14 bits per item. This study also used a dictionary study to estimate the number of words that
Stanford students knew, and converted the estimates for a phonetic code into bits, requiring about 30 — 50
bits per word [4]. All of his estimates converged on the same order of magnitude, suggesting that the
“functional capacity” for human memory is on the order of 10° bits. A detailed critique of Landauer can be
found in [7], with a response given by [8].

Our focus here is on estimating linguistic knowledge across multiple levels of structure and function:
phonemes, wordforms, lexical semantics, word frequency and syntax. At each level, there is a large space
of logically possible linguistic representations (e.g., acoustic cue values, syntactic parses). The challenge
for learners is to discover and store which representations are used in their language. Tools in information
theory allow us to estimate the relevant quantities. First, we assume that before learning, children begin

IThese computations are also used as a training exercise that allows surprising quantities to be approximated. An example
is to compute the thickness of a car tire that is worn off with each rotation. Here’s a hint: you can use your knowledge of how
many miles car tires last for and how much thickness they lose over their lifetime.



with a certain amount of uncertainty over the required representation, R, denoted H[R]. Shannon entropy
[9] quantifies the number of bits that must be received on average to remove uncertainty about what R is
the true one. After observing some data D, learners will have a new amount of uncertainty (perhaps zero)
over R, denoted H[R | D]. Note that here, D is not a random variable, but rather a specific value of data
in learning a given language.

We can formalize the amount of information that D provides about R, here denoted AH[R | D] as the
difference between H[R] and H[R | D]:

AH[R | D] = H[R] - H[R | D] = - 3_ P(r)log P(r) + 3_ P(r| D)log P(r | D). (1)
reR reR

This quantity, i.e. the reduction in entropy, gives the amount of information that D (e.g. data from learning)
provides about a representation R.2 Thus, in order to estimate the amount of information learners must
have acquired, it suffices to estimate their uncertainty before learning, H[R], and subtract from it their
uncertainty after learning H[R | D]. The resulting value will tell us the number of bits of information that
the learning data D has provided.?

2 Results
Table 1: Summary of estimated bounds across levels of linguistic analysis
Section Domain Lower bound Best Guess Upper bound
2.1 Phonemes 375 750 1500
2.2 Phonemic Wordforms 200, 000 400, 000 640, 000
2.3 Lexical Semantics 553,809 12,000,000 40,000,000
2.4 Word Frequency 40,000 80,000 120,000
2.5 Syntax 134 697 1394
Total (bits) 794,318 12,481,447 40,762,894
Total per day (bits)? 121 1,900 6204

We will build up our estimates separately for each linguistic domain. The results of each section are
summarized in Table 1. Supplementary Table S1 summarizes the key assumptions behind each of our
estimations.

2.1 Information about Phonemes

Our phonemic knowledge enables us to perceive discrete linguistically-relevant sounds, or phonemes, from
rich high-dimensional but noisy speech signals. Before a child knows the sounds of their language, they have
uncertainty over the acoustic features of speech sounds. After learning their language, children have much
less uncertainty over the acoustic features of speech sounds as they now have several acoustic cues to help
them identify phonemes. Following the above logic, the decrease in the amount of uncertainty children have
about where their speech sounds lie in acoustic space is the amount of information they must now store
about phoneme cues.

Identifying linguistically relevant acoustic cues has proven challenging for scientists, as there is no ob-
vious invariance, or uniquely identifying component, in speech sounds. For our estimation, we analyze the
information stored for three well studied acoustic cues: voice onset time (VOT) in ms—a cue to voiced-
voiceless distinctions (e.g., the difference between /p/ and /b/), central frication frequency in barks—a cue
to the place of articulation for fricatives (e.g., the difference between /f/ and /s/), and the first two formant
frequencies of vowels in mels—a cue to vowel identity. We assume that initially learners have maximum

2The average of AH[R | D] over D is the mutual information between R and D [10].
31n the case of continuous distributions, (1) has continuous analogs where the sums turn into integrals.
4For this value, we assume language is learned in 18 years of 365 days.



uncertainty along each cue R, following uniform distributions bounded by the limits of perception. In this
case, each r € R has an equal probability of P(r) =1/(B — A), giving

H[R] = f/P(r) log P(r) dr =log(B — A), (2)

where B and A are respectively the upper and lower bounds of perception. For VOT, we assume the range is
—200 to 200 ms. For frequencies, we assume bounds on human hearing of 20 to 20,000 Hz, which translate
to 0.2 — 24.6 in barks and 32 — 3817 in mels. As a measure of the uncertainty over the cue dimension after
learning, we will assume that speaker’s knowledge is captured by a normal prior distribution, giving H[R | D]
as

H[R| D] = /N(as | p,0)log N(z | p,0) de = %log(27reo2) (3)

where N is a normal probability density function,® and p and o are the participants’ inferred mean and
standard deviation. To find o for real humans, we use the values inferred by [11, Table 7] to account for the
perceptual magnet effect.b

We find that language users store 3 bits of information for voiceless VOT, 5 bits for voiced VOT, 3 bits
for central frication frequency and 15 bits for formant frequencies. As these acoustic cues are only a subset
of the cues required to identify consonant phonemes, we assume that consonants require three cues; each cue
requiring 5 bits of information. For vowels, we do not adjust the 15 bits of information conveyed by formant
frequencies. As a best guess, again paying attention to primarily the order of magnitude, we assume there
are 50 phonemes each requiring 15 bits, totaling 750 bits of information. For lower and upper estimates, we
introduce a factor of two error [375-1500 bits].

2.2 Information about Wordforms

When dealing with wordforms, the first challenge is to define a “word.” The term “word” is ambiguous and
could mean lemmas, phonological forms, families of words, etc. Entire dissertations could be (and have been)
written on these distinctions. These difficulties are in part why the Fermi-approach is so useful: we don’t
need to make strong theoretical commitments in order to study the problem if we focus on rough estimation
of orders of magnitude. Estimates of the number of words children acquire range on the order of 20,000-
80, 000 total wordforms [12]. However, when words are grouped into families (e.g. “dog” and “dogs” are not
counted separately) the number known by a typical college student is more in the range of 12,000 — 17,000
[13, 14]; although see [15] for an estimate over twice that size. Lexical knowledge extends beyond words too.
[16] estimates that the average adults understands 25,000 idioms, items out of the view of most vocabulary
studies. Our estimates of capacity could of course be based on upper-bounds on what people could learn,
which, to our knowledge, have not been found. Looking generally at these varied numbers, we’ll use an
estimate of 40,000 as the number of essentially unique words/idioms in a typical lexicon.

The most basic thing each learner must acquire about a word is its phonemic wordform, meaning the
sequence of phonemes that make up its phonetic realization. If we assume that word forms are essentially
memorized, then the entropy H[R | D] is zero after learning—e.g. for all or almost all words, learners have
no uncertainty of the form of the word once it has been learned. The challenge then is to estimate what H[R]
is: before learning anything, what uncertainty should learners have? To answer this, we can note that H[R]
in (1) can be viewed as an average of the negative log probability of a wordform, or —log P(R). Here, we
use a language model to estimate the average negative log probability of the letter sequences that make up
words and view this as an estimate of the amount of entropy that has been removed for each word. In other
words, the average surprisal of a word under a language model provides one way to estimate the amount of
uncertainty that learners who know a given word must have removed.”®

5Using a normal distribution with the domain truncated to our perceptual bounds does not change our estimate.

6For vowels, we extend these distributions to their multidimensional counterparts as formant space is (at least) two dimen-
sional.

"In this view, we neglect the complexity of the language model, which should be a much smaller order of magnitude than
the number of bits required for the entire lexicon.

8 Analogously, we can view the surprisal as the number of bits that must be remembered or encoded for a particular
outcome—e.g. to learn a specific wordform.



Figure 1: The shaded spheres represent uncertainty in semantic space centered around a word (in green).
Left: The uncertainty is given with respect to the word’s farthest connection in semantic space (in yellow),
representing R. Right: The uncertainty is given with respect to the N** nearest neighbor of the word (in
red), representing r. The reduction in uncertainty from R to r reflects the amount of semantic information
conveyed by the green word.

To estimate these surprisals, we used the CELEX database [17], we computed the surprisal of each word
under 1-phone, 2-phone, 3-phone and 4-phone models [see 18] trained on the lexicon. This analysis revealed
that 43 bits per word on average are required under the 1-phone, 33 bits per word under the 2-phone, 24
under the 3-phone and 16 under the 4-phone model. Noting the sharply decreasing trend, we will assume
a lower bound of about 5 bits per word to store the phonetic sequence, a “best guess” of 10 bits per word
and an upper bound of 16 as in the 4-phone.® When our best guess is multiplied by the size of the lexicon
(40,000 words), that gives an estimate of 400,000 [200,000 — 640,000] bits of lexical knowledge about the
phonetic sequences in words.

2.3 Information about Lexical Semantics

The information contained in lexical semantics is difficult to evaluate because there are no accepted theories
of semantic content, or conceptual content more generally [19]. However, following Fermi, we can make very
simplified assumptions and try to estimate the general magnitude of semantic content. One way to do this is
to imagine that the set of word meanings are distributions in a N-dimensional semantic space. If we assume
that the entire space is a Gaussian with standard deviation R and the standard deviation of an individual
word meaning is 7, then we can compute the information contained in a word meaning as the difference in
uncertainty between a N-dimensional Gaussian with radius R as compared to one with radius . The general
logic is shown in Figure 1. The “space” shown here represents the space of semantic meanings, and words are
viewed as small distributions in this space covering the set of things in the extension of the word’s meaning.
Thus, when a leaner acquires a word like “accordion”, they know that the word refers to some relatively
small subset (of size ) of possible objects, but they may not be certain on the details (does the extension
cover harmoniums? Concertinas? Bayans?). The reduction in entropy from a total semantic space of size
R—no idea what a word means—to one of size r is what we use to approximate the amount of information
that has been learned.

Equation (3) above gives the change in entropy for a one-dimensional Gaussian. However, the dimension-
ality of semantic space is considerably larger. In the case of an N-dimensional Gaussian, with independent
dimensions and (constant, or homogeneous) standard deviation o in each dimension, the entropy is given
by:

H[R] = g(l +log 27 +log o). (4)

This means that if we go from a R standard deviation Gaussian to a r standard deviation one, the amount

9 As the average word length in this database is ~ 7.5 phonemes, this gives slightly over one bit per phoneme.
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Figure 2: Histograms showing the number of bits-per-dimension ( % log %) for various estimates of R and r.
These robustly show that 0.5 — 2.0 bits are required to capture semantic distances.

of information we have learned is the difference between these entropies,

N N
(1+log2m +logr) = Elogﬁ (5)
T

AHR| D =Y )

5(1 +log 27 + log R)

We estimate R and r in several different ways by looking at WordNet [20] to determine the closeness
of each word to its neighbors in semantic space. In particular, we take r to be a characteristic distance to
nearby neighbors (e.g. the closest neighbors), and R to be a characteristic distance to far away ones (e.g.
the max distance). Note, that this assumes that the size of a Gaussian for a word is about the same size as
its distance to a neighbor, and in reality this may under-estimate the information a word meaning contains
because words could be much more precise than their closest semantic neighbor.

Figure 2 shows %log % for several estimates of R and r for 10,000 random nouns in WordNet. The likely
values fall within the range of 0.5 — 2.0 bits. Because we are plotting %log g and not % log %, these values
may be interpreted as the number of bits per dimension that lexical semantics requires. For instance, if
semantic space was one-dimensional then it would require 0.5 — 2.0 bits per word; if semantic space were
100-dimensional, lexical semantics would require 50 — 200 bits per word. The nearness of these values to
1 means that even continuous semantic dimensions can be viewed as approzimately binary in terms of the
amount of information they provide about meaning.

The dimensionality of semantic space has been studied by [21] and [22], with numbers ranging from
100 — 500 dimensions. Our best guess will use 1 bit per dimension and 300 dimensions following [21] for
12,000,000 bits. Our upper bound uses 2 bits-per-dimension and 500 dimensions for a total of 40,000,000
bits.

For our lower-bound in this domain, we may pursue a completely alternative technique to compute the
lower-bound—one which, surprisingly, gives a similar order of magnitude as our best guess. If there are
40,000 lexical items that must be learned, we can assume that they correspond to 40,000 distinct concepts
(a la principle of contrast [23]). In the “most nativist” case, favored by Fodor [24], we could assume that
there are a corresponding 40,000 meanings for these words that learners innately have. In this case, the
problem of learning is figuring out which of the 40000! pairings of words and concepts is the correct one. It
will take log,(40000!) ~ 553, 809 bits of information to specify which of these is correct. We will use this as
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Figure 3: Accuracy in frequency discrimination accuracy as a function of log word frequency bin faceted by
log reference word frequency bin. Vertical red lines denote within bin comparison. Line ranges reflect 95%
bootstrapped confidence intervals.

our lower-bound. While this seems like an unmanageable task for the child, it’s useful to imagine how much
information is conveyed by a single pedagogical learning instance. Our estimate is derived by a combinatorial
argument: to choose the first word’s meaning, there are N choices, the second there N — 1, and so on. The
total number of choices is therefore N --- (N —1)--- (N —2)--- (N —40000) = N!/(N —40000)!. So if initially
N = 400000 (553,809 bits), there will be N = 39999 (553,794 bits) after one correct mapping is learned,
meaning that a single pedagogical instance rules out 40,000 possible pairings or, equivalently conveys 15.29
bits.

2.4 Information about Word Frequency

Word frequencies are commonly studied in psychology as factors influencing language processing and acqui-
sition [e.g., 25, 26, 27, 28, 29, 30] as well as for their peculiar Zipfian distribution [31]. However, relatively
little work has examined the fidelity of people’s representation of word frequency, which is what is required
in order to estimate how much people know about them. In one extreme, language users might store perhaps
only a single bit about word frequency, essentially allowing them to categorize high vs. low frequency words
along a median split. On the other extreme, language users may store information about word frequency
with higher fidelity—for instance, 10 bits would allow them to distinguish 20 distinct levels of word fre-
quency. Or, perhaps language learners store a full ranking of all 40, 000 words in terms of frequency, requiring
log(40000!) = 553,809 bits of information.

In an experimental study, we asked participants from Mechanical Turk (N = 251) to make a two-
alternative forced choice to decide which of two words had higher frequency'®. Words were sampled from
the lexical database SUBTLEX [32] in 20 bins of varying log frequency. We removed words below the bottom
30’th percentile (frequency count of 1) and words above the upper 99’th percentile in word frequency in order
to study the intermediate-frequency majority of the lexicon. Each participant completed 190 trials.

Participants’ accuracy in answering is shown in Figure 3. The i’th subplot shows participants’ accuracy

10Participants were instructed that we were interested in their first impression and that there was no need to look up word
frequencies.



(y-axis) in distinguishing the #’th bin from each other j’th bin, with the red line corresponding to i = j.
This shows, for instance, that people are poor at distinguishing very close ¢ and j (near the red line), as
should be expected.

Participants’ overall accuracy in this task was 76.6%. Neglecting the relatively small difference in accu-
racy (and thus fidelity) with a words’ absolute frequency, this accuracy can be modeled by imagining that
participants store M levels of word frequencies. Their error rate on this task will then be given by the
probability that two words fall into the same bin, or 1/M. Setting 1/M = 1 — .766 gives M ~ 4, mean-
ing that participants appear to track approximately four categories of frequencies (e.g. high, medium-high,
medium-low, low). This trend can also be observed in Figure 3, where the flat bottom of the trough in each
plot is approximately 5 bins wide, meaning that each bin cannot be well distinguished from its 5 nearest
neighbors (giving a total effective number of bins for participants as 20/5 = 4).

If M = 4, then participants would only need to learn log4 = 2 bits of information about a word’s
frequency, as a best guess. This would yield a total of 2-40,000 = 80, 000 bits total across the entire lexicon.
We construct our lower- and upper- bounds by introducing a factor of two error on the computation (e.g.
per word lower bound is 1 bit and upper is 3 bits). It is important to note that by assuming objective
frequency rankings, our estimate is conservative. If we could analyze participants’ responses with regard
to their subjective frequency rankings, we would expect to see greater accuracy reflecting higher resolution
representations of frequency.

2.5 Information about Syntax

Syntax has traditionally been the battle ground for debates about how much information is built in versus
learned. Indeed, syntactic theories span the gamut from those that formalize a few dozen binary parameters
[33, 34] to ones that consider alternative spaces of infinite models [e.g. 35, 36] or data-driven discovery from
the set of all parse trees [37]. In the face of massively incompatible and experimentally under-determined
syntactic theories, we aim here to study the question in a way that is as independent as possible from the
specific syntactic formalism.

We do this by noting that syntax provides information to parse every sentence of English. In many
cases, the sentences of English will share syntactic structure. However, we can imagine a set s1,S32,...,Sp
of sentences which share as little syntactic structure as possible between each s; and s;. For instance,

Bill [met John] and [Jill’s sister] cried (6)

both have three words but have largely non-overlapping syntactic structures due to the use of a transitive
verb in the first and a possessive and intransitive verb in the second. We will call theses “essentially
independent” sentences when they share almost no syntactic structure. In this case, the bits specifying these
parses can be added together to estimate the total information learners know. If the sentences were not
essentially independent in terms of syntactic structure, information from one sentence would tell us how to
parse information from another, and so adding together the information for each would be an over-estimate
over learners’ knowledge.

We assume that learners who do not know anything about a parse of a sentence s; start with a maximum
entropy distribution over each parse, assigning each an equal probability of one over the number of logically
possible parses of s;, so that

1 1
HR| =- 1
(] TEZR #parses 8 #parses

= log(#parses). (7)

We assume the knowledge of an adult leaves zero uncertainty in general, yielding H[R | D] = 0 so that
AH[R | D] = H[R] — H[R | D] = log(#parses) (8)

for a single sentence s;. In general, the number of logically possible parses can be computed as the number
of binary trees over s;, which is determined only by the length of s;. The (I — 1)’th Catalan number gives
the number of possible binary parses for a sentence of length [. Then, the number of bits required to specify
which of these parses is correct is given by log C;_;. The Catalan numbers are defined by

C”:nil(?)' ©)




As an example, to determine each of (6), knowledge of syntax would have to specify log Cs = 1 bit, essentially
specifying whether the structure is ((c0)o) or (o (00)). But C,, grows exponentially—for instance, C1p =
16796, requiring 9.7 bits to specify which parse is correct for an 11-word sentence.

Looking at a collection of sentences, if s; has length I(s;), then the total amount of information provided
by syntax will be given by

> 10g Clugs-1)- (10)
=1

Again, (10) assumes that there is no syntactic structure shared between the s;—otherwise (10) over-estimates
the information by failing to take into account the fact that some bits of information about syntax will inform
the parses of distinct sentences. Our upper and lower bounds will take into account uncertainty about the
number of distinct sentences s; that can be found.

To estimate the number of such sentences, we use the textbook linguistic examples studied by [38].
They present 111 sentences that are meant to span the range of interesting linguistic phenomena and were
presented independently in [39]. Our best estimate is therefore (10) taking s; to be the lengths of these
sentences. We take the lower-bound to be (10) where I(s;) is half the sentence length of s;, meaning that
we assume that only half of the words in the sentence participate in a structure that is independent from
other sentences. For an upper bound, we consider the possibility that the sentences in [38] may not cover the
majority of syntactic structures, particularly when compared to more exhaustive grammars like [40]. The
upper bound is constructed by imagining that linguists could perhaps construct two times as many sentences
with unique structures, meaning that we should double our best guess estimate. Notably, these tactics to
bound the estimate do not qualitatively change its size: human language requires very little information
about syntax, 697 [134 — 1394] bits. In either case, the number is much smaller than most other domains.

3 Discussion

Summing across our estimates for the amount of information language users store about phonemes, word-
forms, lexical semantics, word frequency and syntax, our best guess and upper bound are on the order of 10
million bits of information, the same order as [4]’s estimate for language knowledge. It may seem surprising
but, in terms of digital media storage, our knowledge of language fits compactly on a floppy disk. The
best-guess estimate implies that learners must be remembering 1000-2000 bits per day about their native
language, which is a remarkable feat of cognition. Our lower bound is around a million bits, which implies
that learners would remember around 120 bits each day from birth to 18 years. To put our lower estimate
in perspective, each day for 18 years a child must wake up and remember, perfectly and for the rest of their
life, an amount of information equivalent to the information in this sequence,

0110100001101001011001000110010001100101011011100110000101100011
01100011011011110111001001100100011010010110111101101110

Naturally, the information will be encoded in a different format—presumably one which is more amenable
to the working of human memory. But in our view, both the lower and best-guess bounds are explainable
only under the assumption that language is grounded in remarkably sophisticated memory mechanisms.

There are several limitations to our methods, which is part of the reason we focus on orders of magnitude
rather than precise estimates. First, our estimates are rough and only hold under our simplifying assumptions
(listed in Table S1). Second, there are several domains of linguistic knowledge whose information content we
do not estimate here including word predictability, pragmatic knowledge, knowledge of discourse relations,
prosodic knowledge, models of individual speakers and accents, among others. Many of these domains are
difficult because the spaces of underlying representations are not sufficiently well formalized to compute
information gains (e.g. in pragmatics or discourse relations). In other areas like people’s knowledge of
probable sequences of words, the information required is difficult to estimate because the same content can
be shared between constructions or domains of knowledge (e.g. the knowledge that “Mary walks” and “John
walks” are high probability may not be independent from each other, or from knowledge about the lexical
semantics of the verb). We leave the estimation of the amount of information language users store about
these domains of language to further research.
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Importantly, our estimates vary on orders of magnitude across levels of representation. These differences
could suggest fundamental differences in the learning mechanism for specific language learning problems. As
these analyses show, the majority of information humans store about language is linked to words, specifically
lexical semantics, as opposed to other systems of language knowledge, such as phonemes and syntax. In fact,
the estimate for syntax is of a similar order of magnitude proposed by some nativist accounts, in that the
number of bits required for syntax is in the hundreds, not tens of thousands or millions. To illustrate, if
syntax learning is principally completed in the first 5 years, children would have to learn a single bit about
syntax every 2-3 days on average. Despite this, the possible outcomes for learners in our best guess for syntax
consists of 2097 ~ 10210 different systems. In other words, learners still would need the ability to navigate
an immense space of possibilities, far greater than the number of atoms in the universe (~ 10%°). In the
other areas of language, even more enormous hypothesis spaces are faced as well, pointing to the existence
of powerful inferential mechanisms.

Turning back to nativism and empiricism, it is interesting that the majority of the learnability debates
have primarily centered on syntactic development, which in terms of bits, is way less information to learn
than that of even just a few word meanings. Perhaps, it is an accident that so much has played out in
syntax where the learning problem is comparably easier to formalize; and yet at the same time it is unclear
if the proposed models would even be identifiable given the acquisition data we could observe. Based on
our estimates, the real learning challenge appears to be lexical semantics, which to our knowledge, has no
nativist learning accounts (c.f. [24]). Any innate human capacity for language learning is most likely to be
for learning lexical semantics.
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Table S1: The assumptions we make in our estimates.

Section

Domain

Assumptions

2.1

2.2

2.3

24

2.5

Phonemes

Phonemic Wordforms

Lexical Semantics

Word Frequency

Syntax

1. The language system must contain information about acoustic
cues to phoneme identity.

2. The maximum entropy over the frequency dimension can be
represented as a uniform distribution over audible frequency
ranges.

3. The maximum entropy over the VOT dimension can be repre-
sented as a uniform distribution ranging from —200 to 200 ms.
4. The variance in language users’ representations of acoustic cues
for phonemes can be well approximated by normal distributions
following [11].

1. The language system favors compression of statistical co-
occurrences.

3. The cost of specifying a language model over phonemes is neg-
ligible.

4. Adult language users have a lexicon of 40, 000 lexical entries.
5. The sample of words we used to induce our estimate is an
adequate approximation to the adult lexicon.

1. Semantic space can be represented as a multivariate normal
distribution with independent dimensions.

2. The maximum entropy over the space can be approximated by
a normal distribution whose standard deviation is the maximum
distance between words.

3. What learners come to know about the semantics of words
narrows the distribution over semantic space based on distance
to the nearest semantic neighbor.

4. Adult language users have a lexicon of 40, 000 lexical entries.
5. Our sample of words is a decent approximation to the distances
of the average word.

1. Errors in word frequency discrimination are a result of insuffi-
cient representational resolution.

2. Subjective frequency rankings are well approximated by objec-
tive frequency rankings (via corpus statistics).

3. Adult language users have a lexicon of 40, 000 lexical entries.
4. The sample of words we used in our experiment are represen-
tative of the words in the adult lexicon.

1. The language system must contain information to uniquely
identify one binary parse tree from all possible binary parse trees.
2. The maximum entropy over syntactic parses is given by the
number of binary parse trees.

3. Sentences from [38] are a good approximation/coverage of the
essentially independent syntactic components of English gram-
mar.
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