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Abstract

This thesis develops the hypothesis that the systematic patterns of children’s word

use over the course of development are the natural consequence of a sophisticated in-

ductive learning mechanism operating with insufficient data. In this thesis, we sketch

out a first-principles account of lexical-conceptual development and implement this

model framework for the case of children learning kinship. Kinship is a valuable

semantic domain to investigate because children show the same developmental tra-

jectory for early word (mis)use, as in their first year of life, spread out over nine

years. A major limitation of evaluating this model and all models of conceptual de-

velopment is that we have poor intuitions about how children make use of data. To

remedy this, we build a data analysis model to investigate the profile of data usage in

word learning; although this technique will be broadly applicable to developmental

science. We then illustrate how this technique can be used to check the first prin-

ciples model of inductive learning and investigate the learning process by compiling

a large cross-cultural dataset assessing children’s knowledge of exact number words.

We then take a step back from the learning mechanism and use Fermi-estimation and

information theoretic techniques to quantify the scale of language learning tasks and

highlight the likelihood of sophisticated learning mechanisms for word meanings.
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Chapter 1

The life of a word

It is a truth universally acknowledged that a child in possession of a new word might

not have the adult-like knowledge of how to use it (e.g., P. Bloom, 2000; E. V. Clark,

1973; Brown, 1973). Children exhibit many systematic patterns of incorrect word

use. Sometimes young children fail to generalize word meanings to correct refer-

ents (e.g., Kay & Anglin, 1982). Other times, they generalize word meanings to

incorrect referents (e.g., Rescorla, 1980). Over the course of development, children’s

understanding of a word shifts between superficial generalizations to the application

of diagnostic criteria (e.g., Keil & Batterman, 1984; Keil, 1989). For some words,

it can take children years after they have started producing a word to master the

non-obvious criteria governing its use (e.g., Borer & Wexler, 1987). Other words re-

quire the development of rich conceptual structures before children acquire adult-like

understanding (e.g., Carey, 2009; Piantadosi, Tenenbaum, & Goodman, 2012). The

goal of this thesis is to evaluate the extent to which a rational constructivist learning

mechanism would predict these systematic patterns of word use as natural process

of lexical/conceptual development. In the process, we develop broadly-applicable,
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statistically-principled data analysis tools in order to learn about learning. We begin

by outlining the time course of lexical-conceptual development.

The development of the lexicon and conceptual development can be thought

of as two separate problems. Lexical acquisition is the process by which learners

map words to concepts. Conceptual development is the process by which learner’s

construct hypothetical word meanings from conceptual machinery. There is strong

evidence to suggest that there is conceptual change occurring over the course of devel-

opment (Carey, 2009). In these cases, conceptual development necessarily precedes

the acquisition of adult-like word meanings. The relevant question thus becomes how

much of children’s lexical acquisition, and patterns of word use, can be viewed as

conceptual development as opposed to constructing mappings between words and al-

ready acquired concepts (L. R. Gleitman, Cassidy, Nappa, Papafragou, & Trueswell,

2005; Snedeker, Geren, & Shafto, 2012)?

While lexical acquisition is a lifelong process, the vast majority of our lexicon is

acquired fairly quickly. At the age of six months, infants have some comprehension

of concrete nouns (Bergelson & Swingley, 2012; Tincoff & Jusczyk, 1999). Under-

standing of basic, abstract non-nouns follows about four months later (Bergelson

& Swingley, 2013, 2015). Children start producing their first words around 12-16

months of age (B. C. Roy, Frank, DeCamp, Miller, & Roy, 2015; Schneider, Daniel,

& Frank, 2015). Within the next six to eight months, children figure out the mean-

ings for a large number of words in what is referred to as the word spurt (Benedict,

1979; Carey, 1978; Goldfield & Reznick, 1990). The initial words learned are mostly

nouns and verbs with concrete referents, before abstract words and function words
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(Bates et al., 1994). By the time children are in college, their vocabulary approaches

around 40,000 words across all lexical categories (Brysbaert, Stevens, Mandera, &

Keuleers, 2016) and 25,000 idioms (Jackendoff, 1997).

Informed by the early shift in coverage from concrete to abstract words before

acquiring words reflecting algorithmic operations or functional relations, many re-

searchers have proposed that language acquisition is largely constrained by cogni-

tive/conceptual development (e.g., Smiley & Huttenlocher, 1995; K. Wexler, 1999;

Shore, 1986; Bowerman, 1974): Without an ability to abstract away from expe-

riences, children would only acquire words with concrete properties. As children

acquire the ability to abstract, they will acquire more abstract nouns and verbs and

function words. Words that require the development of complex conceptual struc-

tures (e.g., number and time words) will take even longer for children to acquire. In

this view, the growth patterns of the lexicon are driven by conceptual development.

Alternatively, this pattern of lexicon growth can be explained by positing that

children have access to fully formed conceptual representations, but have trouble

extracting the linguistic representations that these concepts should map to (L. Gleit-

man, 1990; L. R. Gleitman et al., 2005; Snedeker, Geren, & Shafto, 2007; Snedeker

et al., 2012). Using international adoption as a case study, Snedeker et al. (2007)

showed that children who already acquired one language still show this develop-

mental trajectory of words despite having conceptual structures for these words in

another language. One exception to this pattern is the adopted children’s precocious

use of time words, which possibly suggests that conceptual development is occurring

in the background. This thesis starts with the assumption that conceptual develop-
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ment must occur in order to learn the meaning of words; however, we do not use the

growth patterns of the lexicon as evidence for our claim, nor do we require concep-

tual development to cause the the growth patterns of the lexicon. Instead, we use

the systematic patterns of children’s early word usage to test the hypothesis that

children’s word meanings are constrained by conceptual development.

1.1 Meaning at the word spurt

While infants have knowledge of some word meanings (Bergelson & Swingley, 2012;

Bergelson & Aslin, 2017) and the capacity to use words as invitations for concepts

(Waxman & Markow, 1995; Waxman, 1999; Waxman & Booth, 2001), it is difficult

to infer the extent to which their knowledge matches adult-like competence. The

majority of our understanding of children’s early word meanings come from diary

studies documenting the first years of a child’s language production (e.g., Brown,

1973; E. V. Clark, 1973). These studies report two distinct patterns of incorrect

word usage, which have been confirmed in experimental settings (Rescorla, 1980;

Kay & Anglin, 1982; Fremgen & Fay, 1980): children under-extend a term and

children over-extend a term. For example, children might under-extend the word

doggo, using it to refer to their dog and no other dog. Later on children might over-

extend the word, using it to refer to every four legged thing, including horses, cows

and cats.

The earliest explanation for over-/under-extensions was that children do not have

the adult-like conceptual knowledge corresponding to the word but hastily map a
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word to their partial understanding (E. V. Clark, 1973; Kay & Anglin, 1982). Philo-

sophically, children are faced with Quine (1960)’s problem of the indeterminancy of

translation—i.e., any simple utterance in isolation has multiple possible translations

and any complex utterance in context is not necessarily a mere combination of the

component utterance translations. Any account of learning that faces this problem

has the potential to over-generalize and under-generalize. In the context of word

learning, researchers have proposed three different classes of accounts that could rea-

sonably produce the over-/under-extension observed in children: exemplar accounts

(e.g., Ambridge, 2018), abstraction accounts (e.g., Doumas, Hummel, & Sandhofer,

2008), and construction accounts (e.g., Xu, 2007, 2016, in press). To date, these

proposals have never been formalized on the same learning problem to distinguish

between them.

Under an exemplar account, children store the entirety of their experience and ex-

tend a word to novel situations based on some similarity computation between stored

instances of the word and the current situation (Ambridge, 2018). Learning is holis-

tically storing experiences. In this scenario, the order in which a learner experiences

referents of a word can produce over-/under-extension based on the weighting of

conceptual features when computing similarity—i.e., the spurious correlations dis-

cussed by Murphy and Medin (1985). For example, most bananas are genetically

modified but being genetically modified is not necessary or sufficient for an object

to be a banana. Yet, in an exemplar account banana could be under-extended to

non-genetically modified bananas. On the other hand, banana might also be over-

extended to other genetically modified foods.
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The abstraction account also assumes that children have access to a rich concep-

tual representation of their experience. Instead of storing experience, the problem of

conceptual development is framed as learning the relevant abstraction over some part

of this rich conceptual representation (Doumas et al., 2008; Rogers & McClelland,

2004). If a learner abstracts over some particular subset of their limited experience,

there is a high probability that they will pick the wrong subset. For example, most in-

stances of birthday co-occur with cake and so generalizing over cake would select the

valid birthday events well, but might over-extend the term to include holidays. On

the other hand, if a learner encounters a highly valid cue such as the happy birthday

song, they might fail to include the boring, song-less birthdays in the events denoted

by birthday. Similar to the exemplar account, these models would be sensitive to

spurious correlations1. In general, the exemplar and the abstraction accounts can be

viewed as two different approaches to representing a single computational system.

In contrast to the exemplar and abstraction accounts, which each emphasize the

central role of the child’s access to rich conceptual representations of experience,

the construction account assumes that learners have an inventory of primitive com-

putations/representations that are used to compute a word’s meaning (Xu, 2007,

2016, in press). Over-/under-extensions occur as the result of the rational construc-

tion of a hypothetical word meaning, or concept. When a child only hears a word

(e.g, blanket) to denote a single referent (e.g., their blanket), they should essentially

memorize the word-referent mapping, resulting in under-extension. However, when a

child hears a word (e.g., apple) used with multiple referents (e.g., a red delicious and
1That being said, it is not clear that the spurious correlations are as problematic as described

by Murphy and Medin (1985).
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a granny smith), they should construct a concept that extends to include everything

that they’ve seen (e.g., rounded with a stem), which can result in over-extension

(e.g., a pear is also rounded with a stem). The main difference between the ex-

emplar/abstraction accounts and the constructionist account is a focus switch from

how information is being represented to what information is being represented. In

the exemplar and abstraction accounts, the learner’s rich conceptual experience of

the environment (albeit represented differently in each account) is used to derive hy-

pothetical word meanings and correlations across experiences give rise to extension

errors; whereas, in the constructionist account, the conceptual primitives are used

to build hypothetical word meanings and extension errors are governed both by the

primitive computations and the correlations in the input. It is important to note

that the construction account does not preclude the availability of rich conceptual

representations of the learner’s current experience.

While the above learning accounts would produce the observed over-/under-

extension behavior, researchers have noted several alternative explanations that do

not appeal to learning. If a rational pragmatic agent needs to refer to something that

they do not have a word for, the optimal solution is to over-extend a term that they

already know (Fremgen & Fay, 1980). For example, if you don’t know the word lime

but you do know lemon, a lime is basically a green lemon and a cooperative listener

would understand lemon to refer to a lime in a context with no lemons or green

lemon in a context with a lemon. Researchers have also proposed that over-/under-

extension might be due to performance errors, noting that the timing of children’s

(mis)use immediately follows the rapid acquisition of their first 100-150 words, with-
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out giving them much time to practice retrieving words from their growing lexicon

(Gershkoff-Stowe, 2001).

To properly contextualize these competing accounts, it is important to note that

diary studies often describe the over-/under-extension patterns in terms of children’s

incomplete conceptual knowledge (Brown, 1973; E. V. Clark, 1973); whereas, con-

trolled experiments primarily highlight the role of pragmatic processing and perfor-

mance limitations in explaining these patterns (Fremgen & Fay, 1980; Gershkoff-

Stowe, 2001). One possibility for this discrepancy is that diary studies have the

measurement resolution of behavior on the order of days; whereas, experimental

tasks measure behavior averaged over months. It’s not controversial that children’s

early word use should be influenced by pragmatic processing and performance er-

rors; nonetheless, by conducting experiments by measuring at month intervals when

children are rapidly acquiring multiple words every day, the experimental studies

might not be sensitive enough to detect patterns of word use driven by incomplete

conceptual development. Undoubtedly, pragmatics, retrieval processes and learn-

ing contribute to children’s early word use. To determine the extent to which these

three components explain behavior, we need formalized accounts of these mechanisms

that make targeted and precise empirical predictions about how behavior might dif-

fer for both the time-scale and patterns of word use. Ideally, these models would

be implemented on a learning task with a protracted developmental domain so that

researchers can measure behavior over the course of development.
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1.2 Protracted developmental domains

Fortunately for researchers, children’s acquisition of some words, including space,

time, number, color, kinship, morality, motion, prepositions, quantifiers and other

function words, exhibit a protracted developmental trajectory (Wynn, 1990, 1992;

Bowerman, 2007; Haviland & Clark, 1974; Keil, 1989; Borer & Wexler, 1987; Tillman,

Marghetis, Barner, & Srinivasan, 2017; Wagner, Chu, & Barner, 2018; Tillman &

Barner, 2015). Even though these words make up a small portion of the lexicon,

the majority of research on conceptual development has focused on them, likely

because there is reliable variance in children’s word use and it can be observed

with convenient measurements on the order of months. As a further consequence,

the delayed trajectory is normally interpreted as conceptual development delaying

acquisition. In further support of this view, we see savings on re-learning for some

of these domains in international adoption studies (Snedeker et al., 2012), consistent

with one-time conceptual development. In this light, the fact that we see the same

patterns of over-/under-extension seen in the acquisition of common nouns in some

of these protracted developmental domains (e.g., kinship Benson & Anglin, 1987),

where children have other means of establishing reference and when retrieval process

is fluid for a large portion of their vocabulary, further suggests that children’s early

word (mis)use might be due to partial conceptual knowledge.

Words that exhibit a protracted developmental trajectory normally have abstract

meanings or reflect logical/algorithmic computations. Within these domains, chil-

dren often exhibit additional systematic patterns of non-adult-like word use beyond

over-/under-extension. For example, for abstract concepts involved in morality (e.g.,
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jail) or concepts with clear rule governed systems (e.g., kinship), children go through

a characteristic-to-defining shift (Keil & Batterman, 1984). For example, young chil-

dren endorse the idea that a building in a slum with bars on the window is a jail even

though the residents are free to come and go as they please. At the same time, they

do not endorse the notion that a beautiful castle with delicious food and a swimming

pool that residents are free to use could be a jail; despite the residents never being

allowed to leave without strict permission, or enter unless they have done something

wrong (Keil & Batterman, 1984). These shifts are usually explained as a fundamen-

tal change in the learning process or representations (Werner, 1948; Bruner, Olver,

& Greenfield, 1966; Kemler, 1983; Shultz, Thivierge, & Laurin, 2008) or the devel-

opment of abstraction ability (Piaget & Inhelder, 1969); although, a single shift in

mechanism or abstraction ability does not predict the differences in the timing of the

shift observed across different domains (Keil, 1983).

In more complex conceptual domains, children’s systematic patterns have been

used to motivate stage theories of development for particular conceptual domains.

For example, when children learn the meanings of exact number words, they pro-

ceed through a succession of sub-knower stages even though they produce several

number words (Wynn, 1990, 1992). Children start out as non-knowers, counting

out a random amount when asked for a specific number amount. They progress to

a one-knower stage, counting out exactly one correctly, but failing for larger num-

bers. Similarly, they progress through a two-knower, three-knower and four-knower

stage, where they can count out amounts up to their knower level, but fail on larger

amounts. Then, children master the cardinal principle and can count out an amount
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for every number they can count. The systematic patterns of development for com-

plex conceptual domains are important for distinguishing between the construction

and exemplar/abstraction accounts of learning as the rapid shifts in generalization

patterns are often not reducible to correlations between features in the input and

conceptual representations.

1.3 Approach

The approach in this thesis is to formalize a model framework for conceptual devel-

opment from the first-principles of concept construction. We then implement com-

putational models to identify and predict the patterns of children’s early word use

throughout the entire learning trajectory. As noted earlier the vast majority of chil-

dren’s early word learning occurs within a short time-scale (Benedict, 1979; Carey,

1978; Goldfield & Reznick, 1990), which complicates observation of their early word

use. Therefore, we focus on protracted developmental domains—specifically number

and kinship, and use these models not only to provide implemented theories but also

as explanatory vehicles through which we can understand the problem of conceptual

development. Formal models of development offer an explanatory framework for the

patterns of behavior over the course of learning and for the final state. Using de-

velopmental models, questions about the information that is stored by our concepts

can be redefined as questions of learning mechanisms, the environmental availability

of data, the utility of data to the learner and inductive biases. Learning mechanisms

constrain the kinds of information learners can abstract away from data. The envi-
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ronmental availability of data determines the regularities and structures in the world

that could be inferred. The utility of data to the learner—i.e., both their interest in

the data and the perceived value in learning the structure behind the data for their

current goals, shapes what conceptual structures learners build and how learners

approach future learning problems. Inductive biases guide how we make inductive

leaps and construct novel conceptual systems. For example, simple explanations are

preferred over complex ones (Lombrozo, 2007; Bonawitz & Lombrozo, 2012).

In addition to questions of how conceptual development may guide early word

use, the development of the concept-language interface allows us to address many

important theoretical questions in cognitive science broadly: What are the trade-offs

between nativism and empiricism? What are the trade-offs between maturation and

learning? How do we tease apart emerging competence (i.e., what children actually

know) from performance issues (i.e., how they use their knowledge)? Where appro-

priate, the culturally and developmentally informed computational models developed

in this thesis address these questions. To foreshadow, these models place important

constraints on how and if these problems can be solved (Chapter 5), serve as data

analysis tools to provide convergent evidence in support of empirical findings (Chap-

ter 3), and make precise empirical predictions about children’s word use (Chapters

2 and 4).

In Chapter 2, we propose a framework for conceptual development through the

lens of program induction. We implement this framework to model the acquisition

of kinship term concepts, resulting in the first formal learning model for kinship

acquisition. We demonstrate that our model can learn any kinship system consistent
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with it’s learning data using cross-linguistic simulations from English, Pukapuka,

Turkish and Yanomamö. More importantly, the behavioral patterns observed in

children learning kinship terms, under-extension and over-generalization (Benson &

Anglin, 1987; Haviland & Clark, 1974), fall out naturally from our learning model.

We conducted interviews to simulate realistic learning environments and demonstrate

that the characteristic-to-defining shift is an epiphenomenon of our learning model in

naturalistic contexts. We use model simulations to discuss the influence of simplicity

and learning environment on the order of acquisition of kinship terms, positing novel

predictions for the learning trajectories of kinship terms under different conceptual

architectures for learning inter-related systems. We conclude with a discussion of

how this model framework generalizes beyond kinship terms and the limitations of

our model.

In Chapter 3, we fill a large gap in the work on models of development by in-

vestigating the linking hypothesis between the amount of data children use and the

time in which they acquire word meanings. Developmental theories posit that word

learning is delayed by “maturational processes” as well as by the “poverty of stimu-

lus” in the environment (Newport, 1990). Experimental results reveal that children

can rapidly learn words after a single exposure (Carey & Bartlett, 1978; Heibeck &

Markman, 1987; Markson & Bloom, 1997; Spiegel & Halberda, 2011) as well as by

aggregating ambiguous information across multiple situations (Smith & Yu, 2008).

The challenge of this chapter was to quantify the trade-off between maturational

and data-driven processes in word learning by inferring the profile of children’s data

usage while learning words. Perhaps the most under-appreciated consequence of any
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account of learning is that a learner must wait for data. Chapter 3 models the ac-

quisition of children’s earliest learned words (as measured by cross-sectional parental

reports spanning 14 languages; Frank, Braginsky, Yurovsky, & Marchman, 2015) us-

ing waiting time models from survival analysis (following Hidaka, 2013). Compared

to standard and theoretically informed baseline models, our waiting time model bet-

ter explains and predicts children’s word acquisition. More importantly, our model

parameters are interpretable under a generative process reflecting a maturational

delay before children start attending to data and a period of data-driven learning.

We find that the majority of variance and total time in word learning is explained by

data-driven processes as compared to maturational processes. These findings sug-

gest that, despite empirical evidence showing that children can learn words from a

single instance and computational models suggesting words require on the order of

hundreds or thousands of instances, the typical early-learned word involves keeping

track of information across on the order of ten informative instances.

In Chapter 4, we leverage the power of the inductive learning models described

in Chapter 2 and the waiting time models investigated in Chapter 3 to learn about

learning, specifically quantifying the influence of culture by explaining cross-cultural

differences in exact number word learning. We chart out the culturally-specific and

universal influences on the acquisition of exact number words in a Bayesian data

analysis. Like kinship terms, the acquisition of exact number words has a robust

developmental trajectory (Wynn, 1990, 1992); however, as anthropologists are keen

to point out, the timing of number word learning varies across cultures (Barner,

Libenson, Cheung, & Takasaki, 2009; Sarnecka, Kamenskaya, Yamana, Ogura, &
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Yudovina, 2007). The rampant diversity in both the mathematical problems that

different cultures face (e.g., basket weaving, tailoring clothes, financial transactions)

and the algorithmic solutions cultures adopt to solve them (e.g., Saxe, 1988a) makes

number the ideal domain to look at cultural influences on conceptual/semantic acqui-

sition. Besides obvious potential differences in the amount of environmental input,

differences in mathematical goals could potentially shape how learners combine con-

ceptual primitives and the distribution of types of learning instances. We compiled

a large (N > 1700 children) eight-culture dataset of children’s number acquisition to

infer universal and culturally-specific influences on the learning process. With the

largest dataset aggregated to date, we find strong evidence for an influence of culture

both on how learners combine conceptual primitives to learn exact number words

and on how frequently children experience effective learning instances. Importantly,

a universal bias for simplicity underlies hypothesis construction, in line with most

models of conceptual development. Further, the rate of effective learning instances

are on the same order of magnitude across cultures seen in Chapter 3, which hints

at universal constraints on how children use data.

In Chapter 5, we zoom out from focusing on word learning to evaluate whether

such a powerful inductive learning mechanism is warranted for the task of lexical

development. The majority of work on language acquisition has focused on sophis-

ticated learning mechanisms required to acquire syntactic or phonetic information

(Chater & Vitányi, 2007; N. H. Feldman, Griffiths, Goldwater, & Morgan, 2013;

Goldwater, Griffiths, & Johnson, 2009; Frank & Tenenbaum, 2011; Perfors, Tenen-

baum, & Regier, 2011). How does the amount of information children must store
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about lexical semantics scale in comparison? Chapter 5 adopts Fermi-estimation

and information theoretic techniques to quantify the amount of information about

English linguistic representations a learner must store to use English. Given the

vast work on the learnability of syntax, it is surprising that we find the majority of

information stored about language is allocated for lexical semantics. We see this as

support for a sophisticated learning mechanism for lexical semantics, as outlined in

the previous chapters.

In the last chapter, we summarise the findings of this work, contextualize the

contribution in terms of the literature and highlight future directions.



17

Chapter 2

Logical word learning: The case of kinship

In order to acquire a language, learners have to map words to objects and situations

in the world. From these mappings, they must then learn the underlying concept of

the word that will generalize to new objects and situations. The mappings between

words and concepts, acquired over a lifetime, will constitute the majority of informa-

tion a language user stores about linguistic representations (Mollica & Piantadosi,

2019). While there is a vast literature on how children might solve the problem of

mapping words to the world (e.g., Carey & Bartlett, 1978; Smith & Yu, 2008; Frank,

Goodman, & Tenenbaum, 2009; Medina, Snedeker, Trueswell, & Gleitman, 2011),

we know less about how children use these mappings to inform their concepts in

order to generalize words to new contexts. Research on children’s early word gener-

alization has focused on uncovering biases in children’s generalizations (e.g., shape,

Landau, Smith, & Jones, 1988) and explaining the mechanism and types of input

children need to overcome these biases (e.g., Gentner & Namy, 1999; Graham, Namy,

Gentner, & Meagher, 2010); however, research has yet to precisely predict children’s

behavior across the developmental trajectory. Inspired by the recent findings that
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children maintain and update a limited number of hypotheses about a word’s mean-

ing over the course of development (Medina et al., 2011; Yurovsky & Frank, 2015),

we propose a theoretical model from first principles, to scale up our understand-

ing of how children’s word meanings should change as they observe more data. In

the process, we demonstrate that several seemingly unrelated patterns in children’s

early word use can be explained by the process of induction in naturalistic learning

contexts.

Understanding how children’s conceptual knowledge changes over development

is a non-trivial task. It’s no secret that children’s early word usage does not re-

flect their underlying knowledge. In general, young children’s definitions and, more

importantly, their behavior suggest a partial knowledge of the underlying concept

even though they can produce the word and appear to fully understand the word

(E. V. Clark, 1973; P. Bloom, 2000). Interestingly, tasks assessing this partial knowl-

edge have revealed systematic patterns of word use as children learn the true under-

lying meanings of words. Around their first birthday, children sometimes show a

preference for words to label individual referents and, thus, under-extend a term to

other correct referents (E. V. Clark, 1973; Kay & Anglin, 1982). For example, a

young child may refer to their blanket as blanky and refuse to use blanky to refer to

other blankets. Before their second birthday, children will often over-extend a term,

using it to describe inappropriate but often similar referents (E. V. Clark, 1973;

Rescorla, 1980). For example, children frequently over-extend dog to refer to any

animal with four legs. In some complicated semantic domains (e.g., kinship, moral-

ity), young children continue to over-extend a term for several years. In these cases,
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children’s over-extensions gradually shift from relying on characteristic features to

more defining relations (Keil & Batterman, 1984; Keil, 1989).

While these behavioral patterns are consistently observed in children’s early word

use, it’s unclear whether they reflect partial conceptual knowledge (E. V. Clark, 1973;

Kay & Anglin, 1982), performance limitations–such as retrieving the correct word in

the child’s small but rapidly increasing vocabulary (Huttenlocher, 1974; Gershkoff-

Stowe, 2001; Fremgen & Fay, 1980), or pragmatic reasoning (L. Bloom, 1973; Hoek,

Ingram, & Gibson, 1986; Barrett, 1986). As a result, children’s early patterns of

word use are under-utilized as a source of data for conceptual development. A ma-

jor obstacle to teasing apart these alternative hypotheses is the lack of a formalized

account of conceptual development predicting children’s word use over time. Specif-

ically, what patterns of word use should we expect as children gather more data?

How should these patterns hold cross-linguistically? How do these patterns change

as children learn inter-connected conceptual systems (Murphy & Medin, 1985)? The

model we develop here will serve as a baseline for future research to tease apart

performance from competence in children’s early word use.

In this paper, we describe a rational constructivist framework (Xu, 2007, 2016,

in press) of conceptual development formalized as logical program induction. We

evaluate our framework against the literature on children’s patterns of generalization

over time, specifically under-extension, over-generalization and the characteristic-to-

defining shift. For demonstrative purposes, we implement a model based on this

framework to learn kinship terms, providing the first computational learning model

for kinship term acquisition. The paper is organized as follows: First, we review
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the empirical literature on kinship term acquisition and computational models of

kinship. We then flesh out our model framework and implementation. In presenting

the results, we first demonstrate that the model is powerful enough to learn any

kinship system consistent with its input data. We then provide simulations based on

informant provided learning contexts to show that the general patterns of children’s

word use described above fall out naturally from framing conceptual development as

program induction in naturalistic environments. In the process, we present evidence

suggesting that children’s early word use might be informative about conceptual

development and derive a novel account of the characteristic-to-defining shift. To

demonstrate how this model can be used to entertain important theoretical questions

about how inductive biases and children’s input drive children’s behavior, we examine

the roles of simplicity and environmental input in determining the order of kinship

term acquisition. Lastly, we conclude with a discussion of novel predictions and

limitations of our account.

2.1 Children’s Acquisition of Kinship Terms

Interest in the acquisition of kinship terms began with Piaget (1928)’s study of logical

relationships. Piaget (1928) conducted targeted interviews with 4-12 year old chil-

dren to assess their knowledge of logical relations using the sibling concept as a case

study. Piaget’s task tested the reciprocity of sibling relationships by soliciting defi-

nitions and investigating if children could note the contradiction between the claims

that “There are three brothers/sisters in your family” and “You have three broth-
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ers/sisters.” Based on his interviews, Piaget proposed that children learning logical

relations (like kinship) progress through three stages: egocentric, concrete relational

(transitive), and abstract relational (reciprocal). Piaget also noted significant in-

creases in performance as age increased. Conceptual replications (Elkind, 1962;

Danziger, 1957; Chambers & Tavuchis, 1976; Swartz & Hall, 1972) as well as more

child-friendly elicitation (LeVine & Price-Williams, 1974; Price-Williams, Hammond,

Edgerton, & Walker, 1977; Ragnarsdottir, 1999) and comprehension (Greenfield &

Childs, 1977; Macaskill, 1981, 1982) tasks also find strong age effects in the acquisi-

tion of kinship terms; however, the explanation of age effects varies.

In terms of empirical support for Piaget’s account, the literature provides sparse

and conflicting evidence. Consistent with Piaget, children (5-8 years old) make

fewer mistakes on egocentric concepts (grandmother) than other-centric concepts

(granddaughter) (Macaskill, 1981, 1982). Children (4-10 years old) also perform

better when questions are framed with respect to themselves (What is the name of

your sister?) as opposed to another family member (As for your sister Mary, what is

the name of her aunt?; Greenfield & Childs, 1977). However, equally young children

succeed at taking other people’s perspective when providing kin terms (Carter, 1984)

and young adopted children (4-5 year olds) have more kinship knowledge than non-

adopted children (Price-Williams et al., 1977). Moreover, it’s unclear that children

providing examples of family members when giving a definition reflects an egocentric

understanding of kinship as opposed to the use of kinship terms as terms of address

(for discussion see Hirschfeld, 1989). Given the limited and conflicting data on

egocentric biases in kinship acquisition, we do not evaluate our model against the
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egocentric claims in the literature.

A second line of kinship research lies at the merger of componential analysis

in anthropology (Goodenough, 1956) and the semantic feature hypothesis for word

learning proposed by E. V. Clark (1973). Componential analysis takes up the task

of identifying the minimal set of features required to distinguish relevant distinctions

in meaning. For example, gender is a required feature of the English kin system

because gender is required to distinguish, for instance, mother from father. The

semantic feature hypothesis posits that children acquire the semantics of a concept

“component-by-component” (E. V. Clark, 1973). Thus, developmental studies of

kinship acquisition could inform theoretical anthropological studies of componential

analysis, especially when multiple sets of components are equally as expressive. As

Greenfield and Childs (1977) points out, the pattern of children’s mistakes in an

elicitation task is informative about the actual features of meaning children have

acquired. For example, 4-5 year old Zinacantan children’s mistakes never violate

the feature that siblings have common parentage; however, half of their mistakes

violate gender. Whereas, 8-10 year olds never violate common parentage and gender,

but violate relative age. Therefore, componential analyses that include features

for common parentage and gender are more likely than componential analyses that

do not. For our purposes, the developmental evaluation of componential analyses

potentially highlights the dimensions on which children might generalize.

The semantic feature hypothesis has also been used to predict the order of acqui-

sition of kinship terms. Haviland and Clark (1974) proposed and found evidence for

simplicity to be a driving force in the order of acquisition of English kinship concepts.



CHAPTER 2. LOGICAL WORD LEARNING: THE CASE OF KINSHIP 23

In their analysis, a relationship between two individuals was considered to be one

feature. Relations that could be explained by appealing to one parent/child relation-

ship (e.g., mother) were learned earlier than relations that required two parent/child

relationships (e.g., brother). Similarly terms that required three relationships (e.g.,

aunt) were learned after those requiring two relationships. Surprisingly, terms that

required both a parent and child relationship (e.g., brother) were learned before

terms that required the same relationship twice (e.g., grandma). A similar pattern

was reported by Benson and Anglin (1987); however, they chose to explain their

data by differences in experience with relatives and input frequency of kinship terms

rather than simplicity. While experience seems to explain differences in adopted chil-

dren, at least one study has found no effect of household size on kinship acquisition

(Price-Williams et al., 1977). In general, the extent to which simplicity and experi-

ence contribute to the order of acquisition of kinship terms is still an open question.

We return to this question in our analysis of order-of-acquisition effects from model

simulations.

To summarise, studies on kinship term acquisition document a protracted de-

velopmental trajectory, providing modest evidence for patterns of over- and under-

extension in childrens use of kinship terms; although the exact patterns of extension

vary across cultures. For example, Bavin (1991) and Greenfield and Childs (1977)

find gender over-extensions in Walpiri and Zinacatan children’s kin usage; whereas,

Price-Williams et al. (1977)’s study of Hawiian and the studies on English kin ac-

quisition report no incorrect gender extensions. Interestingly, the children in these

studies are well older than the age range where the typical patterns of over- and
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under- extension are observed. While not all of these studies solicit definitions, these

elicitation tasks are still likely to be challenging for children who have limited verbal

ability. Therefore, we should take these patterns with a grain of salt, as young chil-

dren might not understand the task and older children might lack the verbal ability

to articulate their knowledge. Given these limitations, it is unclear that these pat-

terns should fall out of a model of conceptual development as opposed to a model

of how children verify semantics or produce labels. This makes it all the more in-

teresting if these patterns do emerge naturally from the inductive learning process,

which would suggest that conceptual development may still be contributing to these

patterns despite the limitations of the task.

To further ground the possibility of conceptual development giving rise to pat-

terns of over- and under- extension, it is worth mentioning a related field of studies

regarding the characteristic-to-defining shift observed in children’s knowledge (Keil &

Batterman, 1984; Keil, 1989; Landau, 1982). In Keil’s studies, children are presented

with scenarios of a concept–take for example the concept, grandpa–that emphasize

either characteristic but not defining features (e.g., a nice old man who isn’t related

to you) or defining but not characteristic features (e.g., your parent’s evil father).

Young children (mean 5;7) are more likely than older children (mean 9;9) to accept

a scenario with characteristic features as being true than a scenario with defining

but not characteristic features. Older children are more likely than younger chil-

dren to accept the scenarios with the defining features of the concept. Remarkably,

even some of the older children were not at perfect performance, suggesting that

there is significant conceptual development still taking place in kinship beyond the
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ages in which one typically observes patterns of over- and under- extension. Given

this timescale, we argue that children’s over-extensions and under-extensions might

actually be due to conceptual development—in particular, rational construction of

a logical theory—as opposed to performance-based or pragmatic-based alternative

explanations.

In this paper, we implement an ideal learning model from first principles. The

model framework is designed to learn any kinship system consistent with the in-

put; however, the model is not designed to match the patterns of behaviors children

demonstrate when learning kinship. We evaluate the model against these patterns

of behavior to show that a first principles learning mechanism provides an explana-

tion for the patterns of over- and under- extension behavior we see in children even

though there was no design pressure to do so. Further, we expand the model by

adding assumptions about the learning context (via interviews) and the environmen-

tal distribution of data to show that when this first principles learning model operates

under naturalist contexts and distributions of data, it predicts both a characteristic-

to-defining shift and the order of kinship term acquisition that we observe in children.

Lastly, we identify how the model could be used to identify primitives, and to test

early pragmatics and retrieval issues in children’s word use.

2.2 Computational Models of Kinship

From a formal modeling perspective, kinship is an ideal domain for studying how chil-

dren’s conceptual knowledge develops into the rich rule-like concepts and conceptual
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systems seen in adult definitions. Kinship easily lends itself to logical representation

(e.g., Greenberg, 1949; Wallace & Atkins, 1960). It is relatively clear how to exten-

sionally define the conceptually-aligned upon meanings of kinship terms. Kinship

systems are relational concepts by nature, which allows us to look at the acquisition

of concepts that are difficult to reduce to similarity. Further, kinship is an ideal test-

bed for how inter-related conceptual systems are learned, as adult kinship knowledge

suggests inter-related, not independent, concepts for kinship terms. That being said,

most of the previous computational models of kinship had other motivations.

The earliest computational models of kinship were primarily concerned with au-

tomating componential analysis. Given a large set of features about each kinship

term in a language, what is the minimal set of features required to distinguish the

terms (Goodenough, 1956; Lounsbury, 1956)? As Burling (1964) was quick to point

out, the componential analysis of a kinship dataset has many possible solutions.

Pericliev and Valdés-Pérez (1998) implemented a model to perform componential

analysis that finds all possible solutions possessing both the smallest number of

unique features and the shortest feature conjunctions required to define all terms.

Proving Burling’s point, Pericliev and Valdés-Pérez (1998)’s automated analysis of

Bulgarian kinship systems found two equally complex feature inventories that use

different features. To complement componential analyses, several behavioral stud-

ies utilized multidimensional scaling techniques to uncover the dimensionality of

kinship components and arbitrate between different componential analyses (e.g.,

K. N. Wexler & Romney, 1972; Nakao & Romney, 1984). Recent work in the spirit of

componential analysis has taken up the search for kinship universals using optimality



CHAPTER 2. LOGICAL WORD LEARNING: THE CASE OF KINSHIP 27

theory (D. Jones, 2010) and Bayesian methods (Kemp & Regier, 2012).

Early connectionist models have used learning kinship as a test case for dis-

tributed models of relational concepts. Hinton et al. (1986)’s family tree task focused

on learning an encoding for the family members on a given tree and the relationships

between them. The connectionist model received input vectors reflecting an individ-

ual on the tree (e.g., Simba) and a kinship relationship (e.g., father) and output the

individuals on the tree who completed the kin relation (e.g., Mufasa). The model

learned interpretable embeddings for people on the tree, such that semantic features

(e.g., gender) could be easily extracted. However, the relationship embeddings were

not interpretable and the generalization performance of the model was poor. Using

linear relational embedding, Paccanaro and Hinton (2001) greatly improved the gen-

eralization performance. Their model learned relationships as rotational transfers

between point vectors in a space reflecting individuals. The model was successful at

completing the implicit structure behind the training data especially when incorpo-

rating held out people into the system; however, the model did not fare as well when

incorporating held out relations to the model. The model learns the family mem-

bers and all of the relations on the tree without learning the actual tree structure.

Therefore, it’s unclear how well the relations learned will generalize to an entirely

new family tree. Importantly, neither distributed model makes any claims about

children’s behavior while learning. Though, Paccanaro and Hinton (2001) did point

out that the most common generalization error was over-extension of sibling terms

to include the speaker—i.e., the common failure of Piaget (1928)’s logic problem.

More recent computational models have approached the acquisition of kinship
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knowledge through a Bayesian relational-learning or theory-learning perspective.

The Infinite Relational Model (IRM; Kemp, Tenenbaum, Griffiths, Yamada, & Ueda,

2006) uses the presence or absence of relations between individuals and kinship term

use to learn groupings of these individuals and properties shared by the groups, which

are diagnostic of the relationship. For example, applying the IRM to data from a

complex Australian kinship system results in groups of individuals that share “diag-

nostic” kinship relevant feature dimensions such as age and gender. Katz, Goodman,

Kersting, Kemp, and Tenenbaum (2008) proposed a generative model similar to the

IRM but with a richer representation system based in first order logic, Horn Clause

Theories. Their model learns each individual’s kinship relevant properties and the

abstract rule governing how those properties give rise to the kinship relation. Katz

et al. (2008)’s representation scheme has two advantages over the IRM. First, Horn

Clause Theories are compressible probability models that license deductive inference,

inductive inference and deductive inferences based on inductive inferences. Second,

Horn Clause theories are context independent, which allows one’s knowledge of kin-

ship to easily generalize beyond the observed/training data. Similar first order logic

representation schemes have been used to analyze the space of all possible kinship

systems to identify the pressures that influence which kinship systems are extant in

the world (Kemp & Regier, 2012). Surprisingly, extant kinship systems are found

at the optimal trade-off between simplicity and communicative efficiency. Yet again,

while these computational models of kinship provide proof of learnability, they do

not make claims about children’s behavior during learning.

Our model builds on the intuitions of the Bayesian models. Following Katz et



CHAPTER 2. LOGICAL WORD LEARNING: THE CASE OF KINSHIP 29

al. (2008), we adopt the use of a context independent representation scheme. Our

model also incorporates a pressure for simplicity, which is line with Kemp (2012) and

other studies of kinship acquisition (e.g., Haviland & Clark, 1974). Our approach will

depart from past models in two ways. First, our representation scheme is inspired by

set theory instead of horn clauses1, which provide poor fit to adult’s induction and

generalization behavior (Piantadosi, Tenenbaum, & Goodman, 2016). Operating

over sets is a more functional representation scheme that emphasizes generating

members of those sets, or possible word referents, as opposed to computing the truth

of a logical expression. Second, we aim to provide not only a proof of learnability

but an evaluation of the full developmental trajectory of concepts (illustrated here

with kinship), including the the common behavioral patterns of mistakes children

display. Whereas previous learning models with logic-like representation schemes

have not been evaluated against behavior, we use our model to explain the patterns of

children’s behavior while learning these concepts, while formalizing the contributions

of the data, the learning context, and inductive biases.

2.3 The approach: Concept induction as program
induction

The basic premise of our approach is that conceptual knowledge can be likened to a

computer program. One role of a concept is to point to entities in the context. For

example, your concept of chase allows you to detect entities in the context that move

in a particular relationship to each other as opposed to static entities or randomly
1Although see Mollica and Piantadosi (2015) for a first order logic implementation of our model.
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moving entities. In this regard, a concept’s ability to denote entities is like a program

that takes as input a context of potential referents and returns a set (possibly empty)

of referents consistent with that concept. We formalize this metaphor by defining

concept induction as probabilistic program induction (e.g., Lake, Salakhutdinov,

& Tenenbaum, 2015; Piantadosi & Jacobs, 2016; N. D. Goodman, Tenenbaum, &

Gerstenberg, 2015).

This metaphor capitalizes on several similarities between programs and concepts.

First, both programs and concepts are relational in nature. Concepts are defined in

terms of both their extension and their relations to other concepts (e.g., dog and

wolf share common origin). Programs are defined in terms of base functions, the

compositions of these functions and the relations between variables and functions.

Second, placeholder structures are important in both program induction (e.g., cre-

ation of new variables or sub-routines) and conceptual development (e.g., the count

list in number learning; Carey, 2009)2. Third, conceptual development and pro-

gram induction both emphasize the dynamic nature of knowledge. When a young

child originally pieces together a concept, it can be thought of as chaining infer-

ences about what underlying features or relationships are good approximations to

the concept’s true meaning. Similarly in program induction, the model is chaining

inferences about what underlying base functions or relationships between base func-

tions are good approximations to the program’s desired output. Lastly, concept and

program induction can both result in many intensionally distinct representations that
2While Carey (2009) discusses placeholder structures in relation to conceptual change, we only

mean to highlight the ability for conceptual change in these models (e.g., Piantadosi et al., 2012)
without implying that all conceptual learning requires conceptual change
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are extensionally equivalent. The principles that a programmer might use to choose

between two equivalent representations (e.g., simplicity, minimal hidden structure

and ease of deployment) are the same principles we see in children’s explanations

(e.g., Bonawitz & Lombrozo, 2012; Johnston, Johnson, Koven, & Keil, 2016).

We flesh out our framework at the computational level of analysis (Marr, 1982)

as an ideal learner model to illustrate how a rational learner might solve the prob-

lem of program induction given properties of the environment and prior inductive

biases (Tenenbaum, Griffiths, & Kemp, 2006). This approach is also a rational con-

structivist approach in that we are looking at how data drives the construction of

a program (Xu, 2007, 2016, in press). In the past decade, research in this tradi-

tion has provided rich accounts of causal learning (e.g., N. D. Goodman, Ullman, &

Tenenbaum, 2011), language learning (e.g., Chater & Vitányi, 2007), number learn-

ing (Piantadosi et al., 2012) and theory learning (Ullman, Goodman, & Tenenbaum,

2012). For our purposes, this approach comes with several advantages. First, the

resulting family of models are explanatory in nature, meaning the behavioral predic-

tions of the model can be attributed to underlying knowledge states (or competence)

as opposed to performance concerns. Second, our model is sensitive to different data

distributions, which provides a technique to address the effect of different data dis-

tributions on learning. Looking to the future, Bayesian data analyses linking this

model to behavioral data can inform us about prior biases (Piantadosi et al., 2016;

Hemmer, Tauber, & Steyvers, 2015). In this form, our model would no longer be an

ideal learner but an arguably stronger descriptive Bayesian model (Tauber, Navarro,

Perfors, & Steyvers, 2015).
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2.4 The Model

For our ideal learner model, we must specify three components: a hypothesis space

over concepts, a prior over hypothetical concepts P (h) and a likelihood function

P (d|h) to score the hypothesis according to the data. The hypothesis space reflects

the cognitive architecture supporting learning. If we imagine that the child is a

scientist (Gopnik, Meltzoff, & Kuhl, 1999), what do we think their hypotheses look

like? For example, hypotheses might look like first order logic, an associative network

or compositional functions. The prior reflects the inductive biases that we suspect

children bring to a learning task. Before seeing any data, which hypotheses do we

think children are likely to generate? For example, the whole object bias (Markman,

1990) suggests that children should readily generate hypotheses linking novel words

to the entirety of the labeled object (e.g., the whole shoe) as opposed to a particular

part (e.g., the laces or aglets).

The likelihood reflects how we think the data (i.e., instances of referential word

use) are generated. Why are people using this word to refer to this object? The

intentional model of word learning (Frank et al., 2009) postulates that speaker’s in-

tend to refer to an object in the context. Given an intention, people will choose

a word that they believe maps to the intended referent in the context. By mod-

eling word learning as inferring speaker’s intentions, this model has qualitatively

captured many important phenomena in word learning, including cross-situational

word learning, a mutual exclusivity bias, and fast mapping; however, this approach

is not without limitation. The intentional model defines the lexicon as a mapping

between words and objects, not words and concepts. As a result, the model does
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not capture how children might generalize a word to similar objects or objects of

the same kind. M. Lewis and Frank (2013) extended this model to include concepts,

noting that speakers have a choice of which concept to employ when referring to an

object. Here, we adopt a consonant framework, focusing on conceptual development

as the mapping between concepts and objects.

For implementing our model, we must also specify how we simulate data for our

learning analyses. Here, a data point d is a collection of four objects: a speaker, who

uses a word to refer to a referent in a context (detailed further below). We model

learning as the movement of probability mass across a hypothesis space as a function

of observing data. Following Bayes rule, the posterior probability of a hypothesis h

after observing a set of data points D is:

P (h|D) ∝ P (h)
∏
d∈D

P (d|h). (2.1)

2.4.1 Hypothesis Space

Constructing the hypothesis space over possible programs involves specifying primi-

tive base functions that are available to the learner and the method by which these

functions compose to form hypotheses. In our model we specify several types of

base functions—tree-moving functions (parent, child, lateral), set theoretic functions

(union, intersection, difference, complement), observable kinship relevant properties

(generation, gender, co-residing adult3), and variables—the speaker (denoted X) and
3We only added co-residing adult as a primitive when modeling an Iroquois kinship system as

this primitive could be constructed out of the other primitives but greatly decreased computational
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the individuals in the context. Tree-moving functions take as argument a reference

node in a tree and return a set of nodes satisfying a specific relationship on the tree.

As justification for including tree primitives, we note that affording these abilities to

children is a common assumption in the literature (e.g., Haviland & Clark, 1974). Set

functions allow for first-order quantification, which has been shown to be relevant for

adults’ concept acquisition (Piantadosi et al., 2016; Kemp, 2012). We acknowledge

that gender and generation are not necessarily observable; nonetheless, we assume

that gender and generation can be approximated by children. Given children’s early

understanding of ownership (e.g., Nancekivell & Friedman, 2017), we assume that

children can compute functions over speakers. Given the late timescale of children’s

acquisition of kinship concepts, we feel these assumptions are appropriate.

Unlike linguistic or componential analyses, we do not intend for these base func-

tions to be a complete account of all of the functions required for learning kinship

systems or all of the function children might bring to the task. For example, children

would require primitives to compute relative age or patrilineage to learn some kin-

ship systems (e.g., Japanese and Korean). Conversely, children might approach the

task with ultimately unnecessary primitive functions, which we will explore further

in the section on the characteristic-to-defining shift. In choosing these primitives,

we have attempted to focus on learning at a level where the base functions are effec-

tively independent of each other. It is easy to see how one could decompose certain

primitives into one level less of abstraction (e.g., generation might be represented

in terms of primitives that check for perceptual features) or how one could choose

search time. That being said, co-residing adults are also easily noticed by children and would serve
as a strong cue for relevant genealogical relationships in some complex kinship systems.
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SET 1−→ union(SET,SET) SET 1−→ parent(SET) SET 1−→ generation0(SET) SET 1−→ male(SET)
SET 1−→ intersection(SET,SET) SET 1−→ child(SET) SET 1−→ generation1(SET) SET 1−→ female(SET)
SET 1−→ difference(SET,SET) SET 1−→ lateral(SET) SET 1−→ generation2(SET) SET 1−→ sameGender(SET)

SET 1−→ complement(SET) SET 1−→ coreside(SET) SET
1
37−−→ concreteReferent SET 1−→ all SET 10−−→ X

Table 2.1: The Probabilistic Context Free Grammar (PCFG) specifying the base
functions and the rewrite rules that govern their composition. Each hypothesis starts
with a SET symbol and there are 37 concrete referents in our learning context.

to augment this set at a greater level of abstraction (e.g., adding a sibling primi-

tive). For any model of learning, the granularity and span of a hypothesis space

depends on the characterization of the learning problem. For our purpose, we are

not interested in how children develop their function for gender or even the family

tree itself. We are focused on how one learns relations over a structure and these

primitives are an appropriate set to investigate this learning problem. Our general

findings will not strongly depend on any particular base function inventory; however,

inventories can make different predictions about the precise pattern and timing of

children’s behavior over learning (see Piantadosi et al., 2016, for a method to eval-

uate different primitive inventories in a similar model framework). Currently there

is insufficient empirical data and qualitative reports are too inconsistent to prop-

erly evaluate the precise predictions of different primitive inventories; however, we

can still evaluate the coarse-grained predictions of the model. For a more detailed

discussion of hypothesis spaces see Perfors (2012).

We compose the base functions using a probabilistic context free grammar (PCFG;

see Table 2.1) following N. D. Goodman, Tenenbaum, Feldman, and Griffiths (2008);

Piantadosi et al. (2012); Ullman et al. (2012). Briefly, a PCFG is a set of rewrite

rules which describe how functions can compose while defining a potentially infi-
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nite space of possible compositions. For example, the composition leading to the

concept of grandpa would require applying the male rule, parent rule, parent rule

and speaker rule, resulting in the program: male(parent(parent(X))). A program

can then be evaluated in a context to produce a set of possible referents4. Here, we

use a PCFG as a tool to generate a finite approximation to an infinite hypothesis

space and not as a model of cognition. In addition to defining an infinite space, a

PCFG also provides a probability distribution over that space. In this distribution,

we weight each rule as equally likely with two exceptions. First to prevent infinite

recursion when generating hypotheses, the speaker, X, is weighted 10 times as likely

as the other rules. Second, we divide the weight for concrete referents equally among

the individuals in our context (detailed below).

2.4.2 Simplicity Prior

One advantage of using a PCFG is that it builds in a natural prior towards simplicity.

Hypotheses that compose more rules are less probable than hypotheses that compose

fewer rules. We motivate this bias towards simplicity in several ways. First, adults

learn simpler concepts faster than complex concepts (J. Feldman, 2003, 2000). Sec-

ond, children prefer simpler explanations over more complex explanations (Lombrozo,

2007; Bonawitz & Lombrozo, 2012)–although see (Walker, Bonawitz, & Lombrozo,

2017). In language learning, simplicity has been suggested as a guiding principle

(Chater & Vitányi, 2007). Further in kinship, simplicity has been proposed as the
4We make the assumption that programs do not return the speaker as referent–i.e., a bias

against interpreting kinship terms as self-referential. The reported results are robust if we relax
this assumption.
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driving factor behind the order of acquisition of kinship terms (Haviland & Clark,

1974). In a global analysis of all possible kinship systems, simplicity is a good pre-

dictor of which kinship systems are actually observed in the languages of the world

(Kemp & Regier, 2012). Therefore, we believe simplicity is an important inductive

bias to be incorporated in our model. The prior probability of a hypothesis, h,

according to our PCFG is:

P (h) =
∏
r∈h

P (r), (2.2)

where r reflects a single use of a base function following the rules in the PCFG (Table

2.1).

2.4.3 Size Principle Likelihood

The last component of the model that we need tospecify is the method of scoring each

hypothesis according to the data. Based on past research with adults (Tenenbaum,

1999; Tenenbaum & Griffiths, 2001), children (Xu & Tenenbaum, 2007a, 2007b;

M. L. Lewis & Frank, 2018) and infants (Gweon, Tenenbaum, & Schulz, 2010), we

use a size-principle, or strong sampling, likelihood for our model of concept induction.

This choice of likelihood comes from the notion that the data we observe is generated

from a structure in the world (i.e., strong sampling) as opposed to randomly gener-

ated (i.e., weak sampling). In strong sampling, the learner weighs positive evidence

with respect to their hypothesis about how the data were generated; whereas, in

weak sampling each data point of positive evidence is weighed equally regardless of
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how likely it was to be generated. As a result, positive evidence for a hypothesis

only distinguishes between hypotheses under a size principle likelihood. For exam-

ple, consider a learner trying to decide if apples are small, red fruit or if apples are

just fruit. Under a strong sampling likelihood, observing a small red apple would

provide more evidence for the hypothesis that apples are small red fruit than for

the hypothesis that apples are fruit because the data better matches the predictions

of that hypothesis. Under a weak sampling likelihood, the same data point would

be equally likely under both hypotheses. Strong sampling is a powerful likelihood

function that can lead to convergence on the true generative process of the data from

positive evidence alone (Tenenbaum, 1999) and even in the presence of significant

noise (Navarro, Dry, & Lee, 2012).

We use a noisy size principle likelihood, which mixes two possible ways a learner

might think the data were generated. First, the data might be generated according

to the learner’s current hypothesis. For a given context, there is a finite set of data

points that a learner expects to receive. Following a size principle likelihood, data

points are sampled randomly from these expected data points:

P (d|h) =


1
|h| if d ∈ {h}

0 else
, (2.3)

where |h| is the number of unique data points (i.e., speaker-word-referent combina-

tions) that a learner expects to see in a given context. Second, a learner might think

that a data point was generated by noise—i.e., randomly mapping a speaker, word

and referent. In this case, the probability of a data point is given by 1
|D| , where
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|D| reflects the number of all possible speaker-word-referent pairs in a given context.

Our noisy size principle likelihood mixes these two generative processes together by

adding a new parameter α reflecting the reliability of the data. At high values of

α, the learner thinks that most of the data is being generated by their conceptual

hypothesis; whereas at low values of α, the learner thinks the data they see are ran-

domly generated. Combining both of these processes, our likelihood function is given

by:

P (d|h) = δd∈{h}
α

|h|
+

1− α

|D|
. (2.4)

Having a noisy process allows us to account for any issues the learner has mapping

words to referents, or resolving the mapping for genitive (e.g., your daddy) or allo-

centric (e.g., a mother saying daddy is coming) uses of kinship terms. If the learner

cannot successful map words and referents, they should act as if their data are being

generated randomly, which would be implemented in the model as having low values

of α.

It is also worth mentioning that the latent scope bias observed in adults (Khemlani,

Sussman, & Oppenheimer, 2011) and children’s explanations (Johnston et al., 2016)

makes similar predictions as a size principle likelihood. According to a latent scope

bias, adults and children prefer explanations that both match all of the observed

data and do not predict data that is not observed. Therefore, we think that the size

principle likelihood is an appropriate choice as it captures both intuitions about the

data distribution and explanatory preferences.
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Figure 2.1: Family tree context for our simulations. Connections above figures reflect
parent/child relationships. Connections under figures reflect lateral/spousal relation-
ships. Male denoted with hats. Numbers reflect the rank order of the amount of
interaction a learner (i.e, 1) has with the other individuals on the tree.

2.4.4 Simulating Data

Our model acts as a linking hypothesis between data, inductive biases and word

use/generalization. Ideally, we should be using this model on “real data” to predict

children’s word use and to infer the inductive biases and conceptual architectures

supporting conceptual development. Unfortunately, there are no existing data sets

that span the nine years of a single child’s experience with kin and kinship terms with

the required detail to fully specify this model or quantitatively measure children’s

kinship term use. As a result, we adopt a simulation approach, which generates

predictions about children’s word use from first principle assumptions about data

distributions and inductive biases. We can then qualitatively compare our predictions

to the trends in children’s behavior reported in the literature.

For our model, a data point has four components, the speaker, the word, the

referent and the context. The context is a family tree, which contains each member
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of the family, their parent, child and lateral connections and their gender (see Figure

2.1). To simulate the data for learning, we first generate all true possible data points

given the target word and the context. We then sample data points from the true set

with probability α or construct a random data point with probability 1− α. For all

analyses reported in the paper, α was set at 0.90.5 In simulating the data this way,

we make two simplifying assumptions. First, we are only sampling the data from

one family tree and it is likely that children are exposed to multiple family trees.

This limitation is mitigated to some extent by our choice to vary the speaker, which

changes the anchor on the tree across data points. Second, allowing the speaker to

vary does not capture the use of genitives or perspective taking—i.e, we assume that

the set of potential referents is always defined with respect to the speaker.

2.5 Results

We divide the results into three sections: Model Insights, the Characteristics-to-

Defining Shift and Order of Acquisition. In Model Insights, we first check that the

model successfully learns the conventionally agreed upon extension for each kinship

term with finite amounts of data. We conduct this analysis using four different

kinship systems: Pukapukan, English, Turkish and Yanomamö. We then take a

closer look at how the model behaves locally at the outset of learning to demonstrate

how children’s early preference for concrete reference–i.e., under-extension, naturally

follows from the process of induction with few data points. We then look at how
5In Supplementary Figure 2.10, we emulate the simulations conducted by Navarro et al. (2012)

to demonstrate that our main findings are robust under realistic values of α.
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broad patterns of over-generalization fall naturally out of the process of induction

when trading off simplicity and fit to the data.

In Characteristic-to-Defining Shift, we augment the model’s hypothesis space, al-

lowing rules based on characteristic features (e.g., uncle : union(big, strong)). We

first replicate our previous analyses using simulations based on naturalistic learn-

ing contexts–i.e., informant provided family trees. For each word learned by each

informant, we demonstrate the characteristic-to-defining shift. We discuss how the

characteristic-to-defining shift arises from properties of the learning context and un-

der what circumstances we would predict to see a characteristic-to-defining shift.

In Order of Acquisition, we return to an open question in the kinship acquisition

literature: is the order of acquisition driven by experience or the conceptual com-

plexity of the kinship relations? We evaluate the order of English kinship acquisition

predicted by the model against the empirically observed order of concept acquisition

in children. We illustrate that while the simplicity of the minimal description length

correct kinship concepts aligns with the observed order of acquisition in children, the

model does not predict that order of acquisition. Inspired by accounts of children’s

experience with kin relations (Benson & Anglin, 1987), we simulate several plausible

data distributions based on kin experience and find that order of acquisition is likely

driven by naturalistic data distributions. In Appendix 2.A.3, we propose an alter-

native explanation for the order of acquisition in learning an inter-related kinship

system instead of simultaneously learning independent kinship concepts.
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Figure 2.2: Average lexicon posterior-weighted accuracy for each word as a function
of data points of that word. Shaded region denotes 95% bootstrapped confidence
intervals. Insets show the color-coded extension of the terms.

2.5.1 Model Insights

The model learns typologically diverse systems as input varies

Kinship is an ideal domain to demonstrate the universality of the learning mechanism

and the importance of the data distribution. Kinship systems are present in almost

every culture in the world; therefore, the task of learning kinship terms is present

in almost every culture in the world. While the importance of kin relationships

might vary across cultures, the structure in the world supporting kinship terms,

genealogy, is universal. That being said, kinship systems show remarkable diversity

across the languages and cultures of the world in terms of which relationships get
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expressed by words. Analyses of the kin relationships that do get encoded in the

languages of the world have shown that extant kinship systems are the optimal trade-

off between communicative efficiency and simplicity (Kemp & Regier, 2012). Starting

from the same underlying structures and ending with principled but diverse systems

can be reconciled if we take the child’s input to be the driving force in conceptual

development.

By framing concept induction as program induction, we can look at how the same

inductive mechanism and primitive functions can give rise to very different programs

depending on the data provided for learning. A breadth of ability is logically required

for explaining how children learn a range of kinship systems across typologically

diverse languages and cultures. We first simulated data for four kinship systems that

vary in their complexity and are common in the languages of the world: Pukapukan,

English, Turkish and Yanomamö. In the tradition of Morgan (1871), Pukapukan,

English, Turkish and Yanomamö are from the Hawaiian, Eskimo, Sudanese and

Iroquois family of kinship systems respectively. Extensions for the kinship terms

of these languages are provided in the insets of Figure 2.2 and Table 2.2. The

Pukapukan kinship system is relatively simple, with six kinship terms that are fully

described by generation and gender. The English kinship is slightly more complex,

with nine terms that require representing parent/child relations. Turkish is even more

complex with high specificity in the first generation. In addition to requiring tree

moving functions, the fourteen kinship terms reflect increased specificity in referents,

separating paternal and maternal brothers and sisters and their spousal relationships.

Without coresidence base functions, Yanomamö is the most complex, requiring both
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Word Extension MAP Hypothesis
Pukapuka kainga z, pgd, ped difference(generation0(X), sameGender(X))

matua-tane pb male(child(parent(parent(X))))
matua-wawine pz female(child(parent(parent(X))))

taina b, pgs, pes intersection(generation0(X), sameGender(X))
tupuna-tane pf male(child(parent(parent(parent(X)))))

tupuna-wawine pm female(child(parent(parent(parent(X))))
English aunt ps, fgw female(difference(generation1(X), parent(X)))

brother b male(child(parent(X)))
cousin pgc, pgec difference(generation0(X), child(parent(X)))
father f male(parent(X))

grandma pm female(parent(parent(X)))
grandpa pf male(parent(parent(X)))
mother m female(parent(X))
sister z female(child(parent(X)))
uncle pb, pgh male(difference(generation1(X), parent(X)))

Turkish abi b male(child(parent(X)))
abla z female(child(parent(X)))
amca fb male(difference(child(parent(male(parent(X)))), parent(X)))
anne m female(parent(X))

anneanne mm female(parent(female(parent(X))))
baba f male(parent(X))

babaanne fm female(parent(male(parent(X))))
dayi mb male(child(parent(female(parent(X)))))
dede pf male(parent(parent(X)))

eniste pgw intersection(lateral(child(parent(parent(X)))), male(complement(parent(X))))
hala fz female(child(parent(male(parent(X)))))

kuzen pgc, pgec difference(generation0(X), child(parent(X)))
teyze mz difference(female(generation0(female(parent(X)))), parent(X))
yenge pgh difference(female(generation1(X)), child(parent(parent(X))))

Yanomamö amiwa z, fbd, mzd female(child(close(X)))
eiwa b, fbs, mzs male(child(close(X)))
haya f, fb male(close(X))
naya m, mz female(close(X))
soaya mb male(difference(generation1s(X), close(X)))
soriwa mbs, fzs difference(male(generation0(X)), child(close(X)))

suaboya mbd, fzd female(difference(generation0(X), child(close(X))))
yesiya fz difference(female(generation1s(X)), close(X))

Table 2.2: The maximum-a-posterior (MAP) hypotheses after learning. For
readability, hypotheses were placed into simpler extensionally-equivalent forms.
f:father, m:mother, p:parent, s:son, d:daughter, c:child, b:brother, z:sister, g:sibling,
h:husband, w:wife, e:spouse
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tree and set functions to specify cross- and parallel- cousins.

Figure 2.2 shows the predicted learning curves for each kinship term in Pukapuka,

English, Turkish and Yanomamö. The x-axis shows the number of data points for

each word observed by the child. Note the differences in scale across languages.

The y-axis is the probability that a learner has acquired the conventionally-aligned

upon meaning of that term–i.e., extends the term appropriately. The shaded region

represents the 95% bootstrapped confidence interval. The line for each word is color

coded to match the word’s extension in the inset. Table 2.2 provides the maximum-

a-posteriori hypotheses learned for each kinship term.

Despite varying reliance on base functions and differential complexity, the model

successfully learns the conventional kinship systems for each of these languages based

solely on differences in data input. Further, the model learns these kinship systems

with fairly few data points, on average between 30 − 50 data points for each word

learned. We discuss the differences between this model’s predicted acquisition order

and children’s empirical order for English in the Order of Acquisition section. Unfor-

tunately, we could not find empirical data for the order of acquisition of Pukapukan,

Turkish and Yanomamö kinship terms.

The model shows an early preference for concrete reference

Young children typically restrict their word usage to refer to particular individuals,

or concrete referents, rather than draw abstractions over individuals (E. V. Clark,

1973; Kay & Anglin, 1982). This pattern naturally falls out of our model’s attempt

to explain the data when there are few unique data points, suggesting that the
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Figure 2.3: Probability of using abstraction as a function of unique data points
at several different prior strengths for concrete reference. At higher prior values of
concrete reference, the rise in the probability of abstraction is shifted to require more
unique data points.

preference for using concrete reference is driven by the data observed rather than

by inductive biases of the model. To look at the model’s preference for concrete

reference, we highlight a single concept, uncle, and focus on the first five unique

data points that the model observes (see Figure 2.3). The x-axis in Figure 2.3

reflects the number of unique data points (i.e., distinct referents) for a word. The

y-axis represents the probability the model uses abstraction to move away from

concrete reference. With no inductive bias favoring concrete reference (red circles),

the model initially favors concrete referents approximately 75% of the time. As more

unique data points are observed, the model quickly switches to abstracting away

from concretes referents.

This behavior is observed because with small amounts of data, the best hypothesis

that explains the data is a concrete referent. For example, if you only ever encounter

the word uncle to refer to Joey the best hypothesis is to think that uncle just

denotes Joey—regardless of how full the house is. As the model observes more data,
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it becomes too complicated to store all the possible referents and so the model adopts

simpler rules that abstract away from the data.

This movement away from concrete reference after seeing two unique referents

might seem too fast, given that children are often willing to provide multiple example

referents before their definitions use abstraction. One possibility is that children

are using kinship terms as a form of address. Therefore, their choice of referential

form is not a reflection of their kinship concept but of their terms of address for

specific people, which extends beyond kin (e.g., teacher). Another possibility is that

children have an inductive bias favoring concrete referents. In Figure 2.3, we plot the

probability of abstraction when the model has a 10 : 1 (green triangles) and 100 :1

(blue squares) bias for using concrete reference as opposed to abstraction. As the

bias for concrete referents increases, more unique data points need to be observed

before the model favors using abstraction.

The model predicts over-extension as seen in children

While older children embrace abstraction, the rules they learn often over-extend a

word to include incorrect referents (E. V. Clark, 1973; Rescorla, 1980). For example,

all women might be referred to as aunts. Unlike under-extension, which is driven

by the local data distribution at the onset of learning, over-extension is a global

behavior of our model. What is interesting is that the model not only predicts

over-extension but predicts specific patterns of over-extension as a function of the

data it has observed and the base functions supporting the hypothesis space. For

example, Figure 2.4 shows the model’s predicted pattern of use for the term uncle
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Figure 2.4: The posterior probability that each person on the tree is an uncle of the
learner (in black) at various data amounts. Red indicates high probability and blue
indicated low probability.

conditioned on a learner, represented in black. Having observed few data points,

everyone in the context is equally unlikely to be denoted by uncle. Within the first

5 data points, the model extends the term to all members of the learner’s parent’s

generation (which is a base function). By the time the model has encountered 14 data

points, the model has narrowed that down to only the males of that generation (which

is the composition of two base functions). Near 33 data points, the model’s extension

looks very human-like; however, it is important to note that the model still needs to

tease apart several different hypotheses that might make incorrect predictions if the

context was to vary. In fact, the model does not learn the context-invariant concept

of uncle until around 45 data points.

Over-extension in the model falls out of the interaction between the size-principle

likelihood and the base functions supporting the hypothesis space. A noisy size prin-

ciple likelihood posits that it is better to predict additional, unseen data than to
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Figure 2.5: Average lexicon posterior-weighted accuracy, precision and recall for
each word as a function of data points. Recall greater than precision is a hallmark of
overgeneralization. Shaded regions represent 95% bootstrapped confidence intervals.

fail to predict the observed data. Therefore, once the model has exhausted simple

concrete hypotheses, it begins to abstract but it prefers to abstract using base func-

tions that cast wide nets over referents–i.e., predicting many referents. The model

will shift from these simple wide-reaching hypotheses to narrower hypotheses as it

observes more data that can be explained better by a more complicated hypothesis.

As a result, the patterns of over-extension should be predicted by base functions

and compositions of base functions that increasingly approximate the true concept.

We provide model predictions of the over-extension pattern for each kin term in

supplemental material as an illustration. The specific patterns of over-generalization

depend heavily on the base functions and more empirical data is needed to distinguish

between base function inventories.



CHAPTER 2. LOGICAL WORD LEARNING: THE CASE OF KINSHIP 51

For a bird’s eye view of over-extension in the model, we can compare the model’s

posterior weighted recall and precision. Recall is the probability of comprehending a

word when it is used correctly. With a wide enough hypothesis, a learner will accept

all of the correct uses of a word; however, they will often accept incorrect uses of a

word as well. Precision is the probability of producing a correct referent given the

learner’s current hypothesis. For example, if the learner had the correct definition of

uncle, she would produce all and only the correct uncles and so precision would be

1.0. If the learner had a current hypothesis that over-generalized, she would produce

correct uncles only a fraction of the time, even if her current hypothesis contained

all of the real uncles. As a result, precision would be less than one. To visualize the

presence of over-generalization, we use an F1 score plot to compare posterior weighted

precision to posterior weighted recall. Greater recall than precision is a hallmark of

over-extension. Figure 2.5 illustrates this signature pattern of over-extension for each

word in English6.

2.5.2 The Characteristic-to-Defining Shift

As introduced earlier, the characteristic-to-defining shift is a prevalent pattern of

children’s over-extension. Young children are more likely to over-extend using char-

acteristic features (e.g., robbers are mean) as opposed to defining features (e.g., rob-

bers take things). While the characteristic-to-defining shift is commonly observed in

concept acquisition, the process by which this occurs is unclear. One possibility is

that the characteristic-to-defining shift is a stage-like transition that occurs in the
6Appendix 2.A.2 contains F1 score plots for every language and context simulated in this paper.
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representational system (Werner, 1948; Bruner et al., 1966). For example, the shift

could be explained by a transition from representing concepts holistically—i.e., using

all the features of objects, to representing concepts analytically—i.e., narrowing the

representation to include only specific relevant features of objects (Kemler, 1983).

Neural network models of conceptual classification and their exentsions inherently

capitalize on this idea when demonstrating a shift (e.g., Shultz et al., 2008; Doumas

et al., 2008). Another possibility is that there is a change in the mechanism by which

one learns concepts. For example, concept learning might change from storing ex-

emplars to constructing prototype or rule-based representations. These hypothetical

changes in representation or processing might be maturational in nature, such as

the development of abstraction (Piaget & Inhelder, 1969). Alternately, they may

be driven by inductive inference mechanisms operating over observed data, as in

rational constructivist accounts (Xu, 2007, 2016, in press).

From the outset we can narrow down this space of theoretical hypotheses. The

conceptual to defining shift is most likely a function of data, not maturation (Keil,

1983). One prediction of a maturational-shift is that at a single time-point, chil-

dren should represent all words using characteristic features or defining features,

whereas a data-driven shift predicts that both adults and children should have more

characteristic-based representations in unfamiliar domains, and more rule-based rep-

resentations in familiar domains. The maturational and shift hypotheses do not

explain children’s behavior—children seem to possess characteristic representations

and defining representations of different words at a single time point. In contrast,

the prediction of the data-driven hypothesis, namely that individuals have more
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characteristic-based representations in unfamiliar domains and more rule-based rep-

resentations in familiar domains, is what we observe both in children (Chi, 1985)

and in adults (Chi, Feltovich, & Glaser, 1981).

All of the aforementioned explanations for the characteristic-to-defining shift re-

quire a discrete shift in representation or process. However, it is unclear whether a

representational or mechanistic shift is entirely warranted. To date, no model has

tested whether a characteristic-to-defining shift could be a natural by-product of

the continuous data-driven construction of concepts. Here, we illustrate that the

characteristic-to-defining shift could emerge even without discrete changes in repre-

sentation, processing or abstraction ability. Under our model, the characteristic-to-

defining shift is an epiphenomenon of incremental learning within certain learning

contexts, similar to conceptual garden-pathing (Thaker, Tenenbaum, & Gershman,

2017).

We expect our model to demonstrate a characteristic-to-defining shift only if the

characteristic features of the people in the context are informative but imperfect in

their ability to capture the underlying concept (by denoting the proper referents).

If the characteristic features accurately capture a concept, the model should never

shift from favoring characteristic hypotheses to defining hypotheses. If, however, the

characteristic features are uninformative, and thus poor at capturing a concept, our

model should favor defining hypotheses, predicting either no shift or an implausibly

rapid shift from characteristic to defining hypotheses. The extent to which individual

features apply beyond the learner’s family tree context will also influence its utility in

explaining the shift. As a result, the feature landscape across contexts could influence
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Figure 2.6: Distance-ranked family trees from informants. Circles represent females;
squares males. Bold lateral lines denote spousal relationships. Informant 1 (top left)
provided 107 unique features; Informant 2 (top right) 88; Informant 3 (bottom left)
92; and Informant 4, 59.

the timing of both the shift and acquisition of the term. For example, if characteristic

features explain the learner’s data equally as well as defining features, a learner

would require more disambiguating data points before learning the term than if

they hadn’t considered any characteristic hypotheses. Similarly, if the characteristic

features that best explain family relations on a learner’s own tree apply broadly to

individuals outside the family context, the features are not informative enough and

the characteristic-to-defining shift should occur sooner. Therefore, it is crucial that

we collect data about the characteristic and logical relationships of real people to

test if natural data will contain features within the range of informativity that will

show a characteristic-to-defining shift.

We asked informants to provide us with information about their family trees.

Four informants, who were blind to the purpose of the task, drew their family tree,
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START 1−→ SET FSET 1−→ union(FSET,FSET) FSET 1−→ intersection(FSET,FSET) FSET 1−→ feature(VALUE)
START 1−→ FSET FSET 1−→ complement(FSET) FSET 1−→ difference(FSET,FSET) VALUE 1−→ {Yes|No}

Table 2.3: Additional rules for the PCFG in Table 2.1. Now, each hypothesis starts
with a START symbol.

ranked each family member in terms of how frequently they interacted with them

as a child (see Figure 2.6), and provided ten one-word adjectives for each family

member. For each informant, the unique adjectives were used to construct a binary

feature matrix (adjective by family member). Each informant was presented with the

feature matrix and asked to indicate if each feature applied to each family member.

Informants made a response to every cell of the matrix: zero if the feature did

not apply; one if the feature did apply. The informants provided between 59–107

(M = 86.5) unique features including both experiential features (e.g., strict) and

perceptually observable features (e.g., blonde)7. We used these features to augment

the hypothesis space with the rules in Table 2.3. One limitation of our design is

that across feature matrices there was no requirement for shared features. In our

matrices, there is little overlap in the solicited features, which prevents us from

simulating data for a learner from other contexts. The main consequence for our

analysis is that we can only predict the upper limit for the number of data points

required to observe a shift as features applying more broadly or incorrectly across

contexts would hasten the shift. Features applying less broadly or correctly across

contexts would not introduce a bias.

The informant provided contexts are smaller/sparser than the context used in
7All family trees, feature matrices and code can be found at

https://github.com/MollicaF/LogicalWordLearning
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Figure 2.7: Average posterior probability of using a characteristic or a defining hy-
pothesis (y-axis) as a function of the amount of data observed (x-axis) for words
(rows) and informants (columns). Shaded regions reflect 95% bootstrapped confi-
dence intervals. For all words, there is a characteristic-to-defining shift.
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our previous analyses (Figure 2.1). Consequently, the types of data points the model

is given in our informant analyses are restricted to a subspace of all possible types

of data points, which could impede learning. The model could accommodate for this

limitation by sampling across multiple contexts; however, this is computationally

expensive to do for each of our informants. For computational efficiency, we only

sample data for each informant within their context, which does not influence our

ability to observe a characteristic-to-defining shift. That being said, the impoverished

data/context sometimes prohibits the model from learning the conventionally-aligned

upon extension of a kinship term. Nonetheless, the model does always learn a pro-

gram that selects the individuals consistent with the observed data. In Appendix

2.A.2, we provide F1 plots for all informants and English kinship terms, and discuss

the situations in which the model does not learn the “correct” concept for a kin term.

Our failure to learn all terms from these simulations suggest that egocentric kinship

data is not always sufficient for learning kinship terms.

To visualize the characteristic-to-defining shift (Figure 2.7), we plot the posterior

probability of entertaining either a characteristic or defining hypothesis (y-axis) as a

function of the amount of data observed (x-axis). For all of the words8, we observe

the characteristic-to-defining shift–i.e., the probability of entertaining a characteristic

hypothesis is initially greater than the probability of entertaining a defining hypoth-

esis. This means that a simple conceptual learning model shows a characteristic-

to-defining shift purely due to the learning context–i..e, realistic data about logical

relations and characteristic features. As these graphs average over the exact data
8Informant 2 has no grandpa relations in their family tree context.
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points a learner observes, they hide the early preference for concrete referents; how-

ever, when plotted in terms of unique data points the early preference for concrete

referents holds.

It’s important to note that our model does not have a discrete change in pro-

cessing or representation as appealed to by previous accounts (e.g., Kemler, 1983).

Additionally, our model had access to abstraction from the outset of learning. Recall

from Model Insights that without a bias promoting concrete referents, the model

without characteristic features had a 25% chance of using abstraction after only ob-

serving a single data point (Figure 2.3). Therefore, Piaget and Inhelder (1969)’s

explanation, that the characteristic-to-defining shift reflects the development of ab-

straction, is not supported. With a precise, formal model of conceptual development

like ours, it is possible to demonstrate that a rational learner would still undergo a

characteristic-to-defining shift even if they had perfect access to the data and the

ability to abstract from the outset of learning.

Compared to previous accounts of the characteristic-to-defining shift, our model

proposes a new explanation: characteristic features are useful because they are simple

and explain children’s initial data well. As children observe more data, children

can justify more complex defining hypotheses but only if and when characteristic

features fail to explain the data. If the characteristic features perfectly explain

the data, children should never switch to defining hypotheses. Perhaps this is why

the characteristic-to-defining shift is only observed in some conceptual domains and

absent in others. For example, even adults are hard pressed to describe concepts like

art using defining features.
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2.5.3 Order of Acquisition: Simplicity and Data Distribu-
tions

Previous research has found that English-speaking American children tend to acquire

kinship terms in a specific order: mother/father, brother/sister, grandpa/grandma,

aunt/uncle and cousin. Haviland and Clark (1974) first explained this in terms of

simplicity, measured as the number of predicates in first order logic required to define

the kinship term. They later revised their account to additionally penalize reusing

the same relational predicate (e.g., [X parent A][A parent Y] is more complicated

than [X parent A][A child Y]). Other researchers have argued that data and the

environment drive the order of kinship term acquisition. Benson and Anglin (1987)

had parents rank order how frequently children spend time with, hear about or talk

about twelve different kinship terms. They found that children’s experience with

different kinship relations correlated with their observed order of acquisition. The

extent to which simplicity, as opposed to experience, drives the order of acquisition

of kinship terms is an open theoretical question. In our model, we can directly pit

experience against simplicity and evaluate these theoretical hypotheses. In Appendix

2.A.3, we propose an additional possibility for the observed order of acquisition.

In this section, we will explore how different data distributions and inductive

biases about the environment influence the order of acquisition of kinship terms.

For each analysis, we simulate 1000 data sets from the tree in Figure 2.1 and run

the learning model with only the base primitives to measure the probability that

kinship terms are acquired in a specific order9. There are four patterns that we
9We return to the simulated tree for practical convenience and because the sparseness of the

solicited trees lead to incomplete learning of kinship terms (see Appendix 2.A.2). While the presence
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Figure 2.8: Possible patterns of order of acquisition. The x-axis reflects the ordinal
position of acquisition. The y-axis represents each word. The shading on the tiles are
filled according to the probability of acquisition. Words that have zero probability
at a given ordinal position are omitted.

might see with these simulations (illustrated in Figure 2.8): an accurate and reliable

order of acquisition (top left panel), an inaccurate, reliable order (top right), an

accurate, unreliable order (bottom left) and an inaccurate, unreliable order (bottom

left). The x-axis in each panel of Figure 2.8 reflects the ordinal position in which

of characteristic features has the potential to influence the order of acquisition, our analyses in
Figure 2.7 suggests the shift would occur before any of the terms are learned and, thus, have little
to no effect on the order of acquisition.
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Empirical Order Word Original H&C Order & Formalization Log Prior CHILDES Freq.
1 mother Level I: [X parent Y][female] -9.457 6812
1 father Level I: [X parent Y][male] -9.457 3605
2 brother Level III: [X child A][A parent Y][male] -13.146 41
2 sister Level III: [X child A][A parent Y][female] -13.146 89
3 grandma Level II: [X parent A][A parent Y][female] -13.146 526
3 grandpa Level II: [X parent A][A parent Y][male] -13.146 199
4 aunt Level IV: [X sib A][A parent Y][female] -19.320 97
4 uncle Level IV: [X sib A][A parent Y][male] -19.320 68
4 cousin Level IV: [X child A][A sib B][B parent Y] -18.627 14

Table 2.4: Complexity in terms of Haviland and Clark (1974) aligns with the prior
probability of our model. Contrary to Benson and Anglin (1987)’s survey, CHILDES
frequencies do not align with order of acquisition.

words were learned. The shading reflects the probability that a word was acquired

at that time. If the order of acquisition is reliable, there should be only one probable

word acquired at each ordinal position (top panels of Figure 2.8). Whereas, if the

order of acquisition is unreliable, there should be several probable words at each

ordinal position (bottom panels of Figure 2.8).

Our initial simplicity prior (i.e., the PCFG in Table 2.1) mostly aligns with

Haviland and Clark (1974)’s original formulation, as seen in Table 2.4. If data

comes at a uniform rate for each word, we would expect to recover this order of

acquisition; however, CHILDES frequencies (MacWhinney, 2000) suggest that the

frequency distribution for kinship terms is not uniform. The top left panel of Figure

2.9 shows the order of acquisition for the model given 1000 different data sets from

the environmental distribution based on CHILDES frequencies and our simplicity

prior. As expected, the model does not predict the empirical order of acquisition.

Instead, the model is mainly uncertain about the order.

One possibility for this pattern is that CHILDES frequency estimates are not rep-

resentative of children’s actual input. CHILDES frequency estimates differ from the
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Figure 2.9: Simulations of the order of acquisition of kinship terms as a function of
changes in environmental data distributions and the inductive biases of the learner.
The strength of these biases are reflected in the s parameter with s = 0 reflecting
no Zipfian bias. A tiny amount of random noise was added to probabilities in each
simulation to settle ties.

surveys of Benson and Anglin (1987) and a larger corpus analysis of kinship term use

across Indo-European languages (Racz & Jordan, 2017). As a larger point, children

do not utilize every instance of a word in their environment as an effective learning
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instance (Mollica & Piantadosi, 2017a; L. R. Gleitman & Trueswell, 2018). There is

evidence to suggest that children filter their input (Perkins, Feldman, & Lidz, 2017;

Kidd, Piantadosi, & Aslin, 2012). To account for the discrepancy between environ-

mental input and the latent distribution of effective learning instances utilized by a

learner, we focus on the intuitions inspired by Benson and Anglin (1987)’s surveys:

children are more likely to be spoken to by people closer to them; and children are

more likely to hear about people who are closer to them. There are two ways in which

these intuitions can be implemented in the model: through assumptions about the

learner’s inductive biases, and through assumptions about the environment. We can

add these assumptions to the learner’s inductive biases by adopting a weighted size

principle likelihood, or Zipfian likelihood:

P (x|h, p) = δd∈{h}α
d−s
x∑

x∈h(p) d
−s
x

+ (1− α)
1

|X|
, (2.5)

where x is the referent, dx is the rank distance of x from the learner, p is the speaker,

X is the set of all possible referents, and s is the Zipfian exponent. This can be

understood as a child expecting kinship terms to refer to people they frequently

interact with as opposed to people they rarely hear about or see.

We can add these assumptions to the data provided to the learner by sampling

data from two Zipfian distribution. For each data point, speakers ranked closer in

distance to the learner are more likely to be sampled than data from speakers ranked

distant to the learner. Conditioned on a speaker and a word, valid referents ranked

closer to the learner are more likely to be sampled than referents ranked distant to

the learner. We implement both of these models with the same noise model used in
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Equation 2.4.

P (p|w) ∼ α Zipf(p|w, s) + (1− α)

|X|
(2.6)

P (x|p, w) ∼ α Zipf(x|w, p, s) + (1− α)

|X|
(2.7)

For both implementations of these assumptions, the strength of the bias is modu-

lated by the Zipfian exponent s. When s = 0, the data are randomly generated–i.e.,

no bias, and the likelihood is equivalent to a size principle likelihood. When s ∼ 1,

the environment is biased to an extent consistent with the distribution of words

in English, and the learner expects to see data points reflecting this bias. When

s > 1, the environment is heavily biased with some “black sheep” family members

almost never spoken about. Similarly, the learner does not expect to see these “black

sheep” family members and discounts data including them. For simulation purposes,

we assigned distances to family members loosely based on Euclidean distance to the

learner in the tree context (see Figure 2.1).

In Figure 2.9, we systematically vary the environment, via the Zipfian exponent of

the data distribution, and the inductive biases of the learner, via the Zipfian exponent

of the likelihood function. In an unbiased environment, the order of acquisition is

relatively inconsistent, suggesting that order highly varies with learning data. The

order of acquisition is most consistent when there is a biased environment and the

bias does not greatly diverge from the learner’s inductive biases. The order most

closely matches the empirical order of acquisition when the environment is more

biased than the learner’s inductive bias (i.e., Inductive Bias s = 0 and Environment
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s = 1), reflecting naturalistic environments where the Zipfian exponent is ∼ 1 and

an unweighted size principle likelihood. The discrepancies between empirical order

of acquisition and our predictions can be explained by our a-priori assignment of

distances. If aunt/uncles were further from the learner than grandparents, we would

expect grandparents to be acquired earlier. Differences between concepts of the same

complexity (e.g., grandma and grandpa) are slightly influenced by ties such that

the alphabetical order appears dominant in Figure 2.9 where there is likely no bias.

Importantly, under this Zipfian environmental distribution the model still shows

under-extension, over-generalization and the characteristic-to-defining shift (Mollica

et al., 2017).

Our simulation analyses suggest that a latent Zipfian environmental distribution

of learning data is more important that an inductive bias to expect to see certain

relatives infrequently or an inductive bias for simplicity alone. That being said, our

analysis of CHILDES word frequencies is inconsistent with this latent Zipfian distri-

bution. How do children decide which input is useful for learning? There are multiple

factors that potentially influence this filter, including the rate of metaphorical use

of kinship terms, the child’s ability to resolve the deixis involved in an instance of

kinship term use (e.g., kinship terms are used with genitives–your daddy is coming

home, and altercentrically–daddy is coming home, which involves selecting a per-

spective with which to represent the relation) and the utility of genealogical kinship

relations over the lifespan (e.g., to young children kinship might just be an address

system; whereas, genealogical relations are of more use to older children in the con-

text of expanding their family). As mentioned earlier, our model would treat these
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Empirical Behavior Model Explanation Behavioral Predictions
Cross-linguistic learnability Inductive learning The number of data points before ac-

quisition
Under-extension Local data distribution The number of data points before ab-

straction.
Over-generalization Trade-off between

prior and likelihood
The pattern of generalization at each
data amount

Characteristic-to-defining shift Learning context The presence of and the number of data
points before the shift

Order of Acquisition Environmental experi-
ence or inter-related
systems

The order of acquisition and number of
data points before each term is acquired

Table 2.5: Summary of the empirical behavior, how the model explains this behavior
and the behavioral predictions to be generated by the model.

data points as noise and it will still learns kinship terms even when there is consider-

able noise (see Appendix 2.A.1). Further research is needed on how exactly children

filter their linguistic input.

2.6 Discussion

By framing concept induction as logical program induction, we have demonstrated

that an ideal learner model predicts many of the empirical phenomena seen in word

learning. The model, like children, learns the kinship system consistent with its in-

put, offering a cross-linguistic proof of learnability. The model illustrates both an

early preference for concrete reference and patterns of over-generalization consistent

with children’s behavior, including the characteristic-to-defining shift. More impor-

tantly the model explains these phenomena in terms of the local distribution of data

at the outset or learning, an inductive bias for simplicity and the relevant cognitive

primitives that best predict the data. Additionally, our model provides a novel expla-
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nation for the characteristic-to-defining shift seen in children’s early understanding

of words, highlighting the role of the learning context instead of proposing discrete

changes in representation and processing. Lastly, the model has addressed open the-

oretical questions about the forces driving the order of acquisition of kinship terms

in English and how learning an inter-related system influence children’s pattern of

word use (Appendix 2.A.3).

Table 2.5 outlines each behavioral phenomenon we attempted to explain, the

components of the model that explain that phenomenon and the behavioral predic-

tions from the model. There are two ways in which the behavioral predictions of our

computational model can be used. First, experiments can be designed to directly

assess components of the model, and the learning environment. For example, the

children’s patterns of generalization could be used in the tradition of componential

analysis to empirically ground the primitive functions used by children. Similarly,

assumptions about how children use data (i.e., the likelihood function) and the in-

ductive biases they bring to the learning task make different predictions for patterns

of generalization and the timing of those behaviors. The model also makes predic-

tions for if and when a learning context should result in a characteristic-to-defining

shift. Second, this model can be used as a baseline or normative model for compari-

son against other theories of conceptual learning and for the development of theories

of related processes. For example, this model shows how a learner should behave if

their goal were to learn the structure in the world; however, it’s possible that learners

are not trying to learn the structure in the world, but instead the conventions of lex-

ical production through linguistic structure alone. Comparing the predictions of our
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model with those of formal models built to learn from linguistic structure would give

us leverage to tell when, and to what extent, children are learning from world struc-

ture and from linguistic structure. Additionally, the model makes predictions of how

children’s competence should change as a function of data. This has the potential to

aid the construction of theoretical models of pragmatic and retrieval processing in

children’s early word use, theoretical models of children’s exploration and informa-

tion extraction, and theoretical models of the other affordances of children’s concepts

(e.g., property induction/generalization).

It is important to highlight several links between this model approach and past

approaches, links which may be connected more formally in future research. First,

the model framework is compatible with similarity based approaches to early concept

acquisition. For example, a program could capture similar features, feature correla-

tions or both. While an individual program is currently implemented as deterministic

in terms of referents, the posterior weighting of hypotheses allows for probabilistic

interpretation. It would also be possible to extend the individual hypotheses to

themselves be probabilistic in nature (see Church program; N. D. Goodman et al.,

2015).

Second, the model framework is amenable to theory based approaches in several

ways. For example, this framework is compatible with the idea of constructing over-

hypotheses from the data, which is a form of non-parametric structure learning in

which higher level consistencies within the data are given independent explanatory

power (Kemp, Perfors, & Tenenbaum, 2007; Perfors, Navarro, & Tenenbaum, sub-

mitted). Learning higher level constraints on which hypotheses are more likely has
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the ability to fundamentally change the predicted pattern of behavior and influence

future learning problems. Similarly, structures can be learned simultaneously from

the same data and then be incorporated into the model.

Finally, the model framework could incorporate several types of reuse and recur-

sion (for one possibility see O’Donnell, 2015), providing a formal link to analogical

transfer. For example, you can learn a specific function composition that is useful

across many different hypotheses and many different learning problems. Alterna-

tively, once a program is learned, it can be used as a function in another program.

Preliminary evidence suggests that people do both (Cheyette & Piantadosi, 2017).

Based on these points, we suggest that our approach might provide an answer to the

challenges for conceptual representations outlined by Murphy and Medin (1985).

Our work differs from past work in several ways. First our model is the first

rational constructivist model (Xu, 2007, 2016, in press), that captures the behav-

ioral phenomena observed in kinship learning. Beyond kinship, our model derives

novel predictions for how conceptual development should unfold over time from first

principles—i.e., simplicity and strong sampling. Previous research has highlighted

the limitations of using children’s early word use as evidence for their comprehension,

arguing that performance limitations and pragmatic language use heavily influences

early productions (Fremgen & Fay, 1980; L. Bloom, 1973). Having independent pre-

dictions for how conceptual knowledge unfolds over time provides leverage to further

investigate these performance limitations and this type of early pragmatic reasoning.

As a result, we may be able to gain insight from records of children’s early word use,

which is currently an under-utilized source of data.
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Second, our account is a continuous account of conceptual development. There

are no fundamental changes in the mechanism of learning or the representation of

the hypothesis space. One noteworthy difference between previous accounts is that

no change results in incommensurable theories (e.g., Carey, 2009); however, the

conceptual system that the model ends on may be non-apparent given the likely

initial hypotheses and the infinite space of hypotheses. From a child’s perspective,

their later theories may be incommensurable with their past theories because it is

highly unlikely to move back to that area of the hypothesis space. As an argument

against the implausibility of such a large hypothesis space10, we provide evidence

that the number of hypotheses actually worth consideration (i.e., within the top

95% posterior probability) at any given amount of data is manageable (median:

9, range:5 − 30)11. Although at this time, we do not provide a mechanism for how

children might generate the hypothesis space, we do not mean to suggest that children

will be considering the entire hypothesis space. Our goal in presenting this model

is not to account for all conceptual change, but rather to provide both convergent

evidence for accounts of conceptual development and a tool for predicting children’s

behavior as they come to wield adult like concepts.

There are many ways interesting directions for future work. For our purposes, we

modelled concepts as programs that take as input all entities in a context, and re-

turn as output a subset of those entities. This formalization captures one use case for

conceptual representations, i.e., extension. It’s plain to see that we use our concepts
10Although, our hypothesis space is no larger than the hypothesis space of any other learning

model—including neural network approaches.
11The upper end of our range comes from Pukapuka, where the concepts often have multiple,

simple, extensionally equivalent hypotheses
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to do much more than to pick out things in the world. Conceptual representations

must also support a whole taxonomy of inductive problems (Kemp & Jern, 2014), in-

ductive reasoning (Gerstenberg & Goodman, 2012) and simulation (Ullman, Spelke,

Battaglia, & Tenenbaum, 2017), including generating possible entities in the absence

of context.

Our account also doesn’t explain how intensional knowledge that people store

about concepts is represented and the way in which people most readily access that

knowledge. In fact, in our specification, a more useful end state would not be a single

hypothesis always returning the conceptually-aligned upon extension, but rather a

posterior over the most useful hypotheses over the course of development. For exam-

ple, in addition to grandpa as male(parent(parent(X))), a better system might also

have some probability mass on union(male, old). Having multiple ways to generate

the extension of a concept would aid retrieval in resource intensive situations, reflect-

ing rational meta-reasoning (Lieder & Griffiths, 2017). For example, finding grandpa

in a room with one man and one woman should not require intimate knowledge of

a person’s family tree. In addition, having a posterior over useful hypotheses might

explain typicality effects (Armstrong, Gleitman, & Gleitman, 1983), as particular

entities might be more easily generated than others under a posterior, compared to

strong-sampling, which would suggest that all true entities be equally as likely under

a fixed hypothesis. Future work should address these possibilities.

As we have argued here, our account, while illustrated with kinship, is broadly

applicable to conceptual development in other domains. That being said, certain

conceptual domains will provide us with a greater opportunity to understand the
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inductive learning mechanism than others. We suspect the model will be most useful

for conceptual domains where children’s understanding unfolds gradually over time.

Protracted conceptual domains, like color, locomotion, number, space and time,

have measurable variance over the course of development, which allows us to use our

model framework as a data analysis tool (Tauber et al., 2015). These domains are

also interesting from an anthropological perspective because they show considerable

cultural variation. As a result, cross-cultural use of this model framework has the

potential to illustrate cross-cultural differences in inductive biases and data usage,

possibly reflecting differential utility of conceptual representations across cultures.

We hope to impart two lessons learned from our model. First, programs are a

powerful representational scheme to formalize concepts. Programs have the abil-

ity to capture both logical and graded/stochastic aspects of conceptual structure.

When combined with data-driven learning techniques, programs not only capture the

end state representation of concepts but provide rich behavioral predictions across

the entire developmental trajectory, capturing phenomena like the characteristic-to-

defining shift in a single model. A critical component of our program representation

scheme is that our programs are functions of contexts, similar to Katz et al. (2008).

Concept deployment and language use are heavily context-sensitive. To generalize

across contexts, we must have something like a program, that can operate over a

given context. Additionally, generative programs have the potential to bridge the

gap between the denotation, simulation and reasoning affordances of concepts.

Second, a precise formal model of conceptual development allows one to rig-

orously test theories and questions developmental science has put forward without
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committing to often necessary data analysis assumptions. For example, fundamental

questions in developmental science include: What biases or abilities (e.g., simplicity,

compositionality, abstraction, recursion) must be in place for children to learn X?

How much data do children need to learn X? Which types of data do children find

most useful for learning X? What resource limitations must be in place to explain

the developmental trajectory of X? Are cross-cultural differences or differences across

populations learning X caused by different biases/abilities, different data availabil-

ity or different consumption/usage of data? These questions can all be addressed

within our model framework through Bayesian data analyses and model compar-

isons. As a result, formal models of conceptual development provide important and

substantial convergent evidence and insight about developmental theories, which

might not be possible or, more realistically, feasible to gather from behavioral exper-

iments/observation alone.

2.7 Methods

2.7.1 Generating the Hypothesis Space

To construct a finite lexicon space appropriate for our analyses, we utilized a va-

riety of Markov Chain Monte-Carlo methods to draw samples from the posterior

distribution over lexicons at different data amounts. Our model is implemented us-

ing the Language of Thought Library for python (Piantadosi, 2014a). As this is a

computational level analysis, our goal is not to provide an account of the algorithms

and processes behind hypothesis generation. Our goal is to describe learning as the
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movement of probability mass over a hypothesis space. Therefore, it is important

to ensure that the finite approximation of the space that we use contains as many

lexicons that are developmentally plausible as possible. Here a lexicon is a collection

of hypotheses, one per kinship term. Our method of constructing a finite lexicon

space had two phases. First, we searched the space of all possible lexicons, result-

ing in many partially correct lexicons. Across all of these lexicons, every word was

learned and therefore, the learning trajectory for each word was present in the space.

Nonetheless, few if any lexicons contained the correct hypothesis for all of the words.

In our second phase, we mixed the hypotheses generated in the first phase to con-

struct lexicons that contained the developmental trajectories of multiple words. A

small percentage of these lexicons contained correct hypotheses for all of the words.

Phase one and two combined generated too many lexicons to tractably analyse fur-

ther. Therefore, we truncated the space by normalizing the lexicons and selecting

the top 1000 hypotheses at various data amounts. For our main analyses, we collapse

across lexicons and analyse developmental trajectories for each word independently

to avoid any complications with not having a complete lexicon space. In Appendix

2.A.3, we show that all results reported in the main text hold when analyses are

conducted over lexicons.

To generate an initial set of hypotheses, we used the Metropolis-Hastings al-

gorithm using tree-regeneration proposals following (N. D. Goodman et al., 2008;

Piantadosi et al., 2012). For each language, we ran 16 chains at each of 25 equally

spaced data amounts between 10 and 250. Due to memory limitations, we only saved

the top 100 best lexicons from each chain. For English, Pukapukan and Yanomaman
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lexicons, each chain was run for one million steps. For Turkish, we first ran 5 chains

for three million steps on a smaller lexicon—i.e., the search did not include the three

words for grandparents or the word for cousin. We then ran 5 chains for three million

steps on the full lexicon. Few if any lexicons resulting from this search contained the

correct hypothesis for all words; however, across all lexicons the correct hypothesis

for every word was learned.

In our second phase, we used Gibbs sampling to mix the hypotheses generated in

the first phase, constructing lexicons that contained the developmental trajectories

of multiple words. A small percentage of these lexicons contained correct hypotheses

for all of the words. Phase one and two combined generated too many lexicons to

tractably analyse further (around 200, 000 nine-word lexicons for English). There-

fore, we truncated the space by normalizing the likelihoods and selecting the top

1000 lexicons at various data amounts favoring lower amounts (8 equally spaced in-

tervals between 1 and 25, and 6 equal intervals between 25 and 250 data points).

For the analyses presented in the main text, we marginalize over lexicons to analyse

hypotheses for different kinship terms independently. As hypotheses are included in

the space based on their performance at varying data amounts, we normalize the like-

lihood by simulating 1000 data points, computing the likelihood of each hypothesis

and taking the average likelihood for each hypothesis.

2.7.2 Learnability, F1 and Over-extension Analyses

To evaluate if a hypothesis ĥ was correct, we compared the hypothesis’s extension

to the hand-constructed, ground truth hypothesis h for each kinship term system.
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We obtain the trajectories for posterior weighted accuracy, precision and recall by

marginalizing over hypotheses at each data amount. For example, the posterior

weighted accuracy is given by:

P (ĥ = h|d) =
H∑

δĥhP (h|d). (2.8)

We adopt this same approach to estimate the extension probability for each referent

x in a context as a function of data:

P (x|d) =
H∑

P (x ∈ |h|)P (h|d), (2.9)

where P (x ∈ |h|) is given by:

P (x ∈ |h|) =


1 if x ∈ |h|

0 else
. (2.10)

2.7.3 Concrete Reference Analysis

As concrete reference is heavily influenced by local data distributions, we constructed

a fixed data set of five unique data points for uncle and ran one MCMC chain

100, 000 steps for each amount of data. We collected the top 100 hypotheses from

each chain to use for analysis. We operationalize abstraction as the probability the
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hypothesis is a function of the speaker:

P (rSET→p ∈ h) =


1 if rSET→p ∈ h

0 else
. (2.11)

The posterior probability of using abstraction at a given data amount is therefore:

P (rSET→p|d) =
H∑

P (rSET→p ∈ h)P (h|d). (2.12)

We manipulate the prior bias for concrete reference by changing the PCFG produc-

tion probabilities given in Table 2.1, which influences the prior probability following

Equation 2.2.

2.7.4 Characteristic-to-Defining Shift

We build the hypothesis space for characteristic and defining features separately

for each informant. To gather defining hypotheses, we ran 7 chains at each of 25

equally spaced data amounts between 10 and 250 using the PCFG in Table 2.1 for

500, 000 steps. To gather characteristic hypotheses, we ran 7 chains at each of 25

equally spaced data amounts between 10 and 250 using the PCFG in Table 2.3 for

500, 000 steps. Due to memory limitations, we only saved the top 100 best lexicons

from each chain. For each informant, the defining and characteristic hypotheses were

concatenated to form a single finite hypothesis space. As our analyses collapsed over

lexicons, we did not perform Gibbs sampling as above.

We replicate the learnability and F1 analyses (described in Appendix 2.A.2) using
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the same methods described above. Our analysis of the characteristic-to-defining

shift is similar to our analysis of concrete referents. The posterior probability of

using a characteristic hypothesis at a given data amount is

P (rFSET→feature|d) =
H∑

P (rFSET→feature ∈ h)P (h|d), (2.13)

where P (rFSET→feature ∈ h) is:

P (rFSET→feature ∈ h) =


1 if rFSET→feature ∈ h

0 else
. (2.14)

2.7.5 Order of Acquisition Analysis

For the unweighted order of acquisition analysis, we sampled 1000 different datasets

each containing 1000 data points as follows. A kinship term w is sampled from a

multinomial distribution with θ values reflecting CHILDES frequencies. Given that

term, a speaker-referent pair (x, p) is sampled uniformly from all possible speaker-

referent pairs.

w ∼ Multinomial(θ) (2.15)

(x, p) ∼ Uniform(|(x.p)|) (2.16)

For the Zipfian weighted order of acquisition analyses, we assigned distances to

the tree context in Figure 2.1 by fixing the learner as the central female in the

youngest generation that had both a brother and a sister, and assigning relatives
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closer in Euclidean distance smaller distance values. As a result, aunts and uncles

are assigned smaller distance values than grandparents, which results in learning

aunt/uncle before grandparents (against the canonical order). The assignment of

distance in our informant provided data suggests this relationship has great indi-

vidual variability, so we refrain from making strong predictions about the order of

acquisition for individual terms. Data is then sampled from Zipfian distributions as

outlined in Equations 2.6 and 2.7.

For both schemes, we calculate the posterior accuracy of each hypothesis as a

function of data following Equation 2.8 after each data point is sampled. If the

posterior weighted accuracy is greater than or equal to 0.99, we mark the word

as learned and record its ordinal position. Ties were resolved alphabetically. As

a result, we do not make strong predictions about order of acquisition for equally

complex concepts (e.g., the ordering of mother and father), which often pattern

alphabetically in our simulations.

2.A Appendix to Chapter 2

Supplementary Materials can be found at mollicaf.github.io/kinship.html.

2.A.1 Alpha Analysis

Navarro et al. (2012) investigated how the reliability parameter α, which mixes be-

tween strong and weak sampling influences an inductive generalization task. They

simulated environments where the data was generated to be reliable 30− 60% of the
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Figure 2.10: Posterior weighted accuracy (y-axis) as a function of data (x-axis) for
models with different sampling assumptions (linetype and color) for different words
(columns) and environmental reliability values (rows). The virtually invisible shaded
regions reflect 3 standard errors of the mean.

time, and checked how distinguishable a model with different sampling assumptions

would be from pure strong sampling (α = 1). They found that in the limit of data,

models with reliability parameters as low as 0.1 converge to the predictions of strong

sampling. We parametrically vary the reliability of the environment by simulating

data with 30 − 60% reliability and set our model’s sampling assumptions to either

0.1, 0.5 and 0.9 to gauge whether learning in our simulations will be robust to un-

reliable environments and variable sampling assumptions. As can be seen in Figure

2.10, we find no significant differences in learning across sampling assumptions and

environments.

2.A.2 F1 Score Plots

As described in the main text, F1 score plots are a visualization of learnability

and over-generalization. Each figure in this appendix plots the posterior weighted
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accuracy, precision and recall (y-axis) as a function of data (x-axis). Accuracy reflects

the the probability that the model has acquired the adult-like concept for that kinship

term. Recall corresponds to the probability that the model will recognize a correct

referent, and is given by: ∑
x∈ĥ[x ∈ h]

|h|
, (2.17)

where x is a referent, ĥ is the proposed hypothesis, h is the ground truth hypothe-

sis. Precision corresponds to the probability that the model will propose a correct

referent, and is given by: ∑
x∈ĥ[x ∈ h]

|ĥ|
. (2.18)

When recall is greater than precision, the model is over-extending the term.

Figure 2.11 displays the F1 plots for Pukapuka, Turkish and Yanomamö. As

shown in the main text, the model learns the correct extension for every word.

As expected, the posterior weighted recall is greater than the posterior weighted

precision for every word, suggesting that the model over-extends the meaning of

kinship terms. Predictions for the pattern of over-extension for each word is provided

in supplemental material.

The Characteristic-to-Defining Shift

Figure 2.12 displays the F1 plots for each of our informants. For all words, posterior

weighted recall is greater than posterior weighted precision, consistent with over-

extension of kinship words. As discussed in the main text, the model fails to learn

the correct hypothesis for some words due to the impoverished input/context. That
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Figure 2.11: Average lexicon posterior-weighted accuracy, precision and recall for
each word as a function of data points. Precision greater than recall is a hallmark of
over-generalization. Shaded regions represent 95% bootstrapped confidence intervals.
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being said, the model always learns a hypothesis that is consistent with its input. If

we had provided evidence from multiple family tree contexts, we expect the model

to learn the adult-like extension for all of the concepts. This suggests that having

evidence from multiple families is likely an important property of the kinship data

that childern use to learn their kinship terms.

In the majority of cases where the model does not acquire the correct extension,

the conventional hypothesis was blocked by a hypothesis that overfit the context. For

example, Informant 3 overfits for grandma and Informant 4 overfits for grandpa

because there is only one of those relations in their family tree. Hence, it is sufficient

to just point to that person. Informant 2 does not learn aunt, Informant 3 does not

learn sister and Informant 4 does not learn cousin for similar reasons. In these

cases, the conventional hypotheses do have some posterior probability (as evidenced

in Figure 2.12 by non-zero Accuracy) but do not come to dominate the posterior

distribution of possible hypotheses. The conventional hypotheses are blocked by

hypotheses that are less complex, explain the observed data, but would not generalize

properly across contexts.

Instead of overfitting, Informant 1 and 4 do not learn the conventional hypotheses

for aunt and uncle because there are children out of wedlock, which complicates

how we have defined the conventional hypotheses. Importantly, the maximum-a-

posteriori, or best, hypothesis recovered by the model actually generalizes correctly

over trees without out of wedlock children. Informant 2 does not have any grand-

fathers in their family tree context and, therefore, the model never receives data to

learn grandpa.
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2.A.3 Learning an inter-related system

Learning a lexicon. Up until now, we have been assuming that kinship terms are

learned independently of each other. In this appendix, we consider the advantages of

learning an inter-related system, or lexicon. In terms of formalization, the simplest

way to introduce cross-word dependencies in our model is to change the likelihood

from operating over hypotheses h generating data for an individual word to lexicons

L generating data for all words in the system. The simplest prior for a lexicon is the

product of the PCFG prior for each hypothesis in the lexicon:

P (L) =
∏
h∈L

P (h). (2.19)

The likelihood still follows a noisy size principle:

P (d|L) = δd∈
∪

h∈L
{h}

α∑
h∈L

|h|
+

(1− α)

|D|2
. (2.20)

The main challenge in evaluating this inter-related system against developmental

patterns was searching for an acceptable lexicon space—i.e., a space that contains

the correct hypothesis and developmental trajectory for each word and whose lexicons

contain all relevant combinations of those hypotheses. We note that this is purely a

computational resource limitation. We have done our best to capture this space and

note the limitations of our approximation in situ.

Formalizing the problem as lexicon learning has an interesting consequence for

how probability mass moves over the hypothesis space for individual words. Prob-
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ability mass always moves over the hypothesis space along the Pareto-front, or the

curve reflecting the optimal trade-off of prior and likelihood (see Supplementary

Material). Borrowing the analogy from economics, we can look at this as data pur-

chasing complexity. A hypothesis can only afford to be complex if it explains a lot

of data. With very few data points, the highest posterior hypotheses are not very

complicated because simpler hypotheses can explain the data. As more data is ob-

served, the pattern of the data can justify more complex hypotheses. In the limit

of observing data, the data pattern stabilizes and the highest posterior hypothesis is

at the Pareto-front–i.e., the simplest hypothesis that explains all the data. At this

point, observing more data will not change the posterior mass over the hypothesis

space. When a noisy size principle likelihood operates over lexicons instead of hy-

potheses, probability mass travels along the Pareto-front slightly faster (as can be

seen in Supplementary Materials).

We conducted the same analyses in the Model Insights and Order of Acquisition

sections of the main text. The F1 plot in Figure 2.13 illustrates the same patterns

of over-generalization found when words are learned independently12. However, the

lexicon formalization learns all of the kinship terms with fewer data points than the

independent formalization. As a result, model comparison between the independent

hypothesis and lexicon formations could reveal whether children approach kinship as

learning a system as opposed to independent hypotheses for kinship terms. Future

research is needed to collect the appropriate dataset for such a model comparison.

Turning to order of acquisition, Figure 2.14 shows the order of acquisition of the
12The non-monotonicity in the posterior probability of the correct hypothesis is due to the lexicon

space not containing all possible combinations of likely hypotheses.
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lexicon model given 1000 different CHILDES weighted data distributions. Interest-

ingly, the pattern is consistent across data distributions and fairly consistent with

empirically observed order of acquisition. As shown in the main text, this result

cannot be attributed to the simplicity prior or the CHILDES weighted environment.

Before we attribute this result to the lexicon’s likelihood, there is one trivial alter-

native worth addressing: the distribution of correct/incorrect words across lexicons

might be biased. Our lexicon space is a finite approximation to the infinite space

of lexicons specified by the PCFG in Table 2.1 and thus, is incomplete. If our fi-

nite space happened to contain more hypotheses approximating the correct order of

acquisition than chance, we would not be able to tell if this result is an artifact of

our approximation rather than a consequence of learning. We think this is unlikely

for two reasons. First, we took measures to balance the correct/incorrect word cor-
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relations across lexicons by mixing words across lexicons using Gibbs sampling (see

Methods). Second, examination of the correlations of our finite approximation to

the lexicon space are inconsistent with the dominant order of acquisition in Figure

2.14.

If the proper dataset for model comparison is collected, future implementations

in this model framework can adopt priors that reward reuse of primitive functions

(as in N. D. Goodman et al., 2008), implement recursion (Mollica & Piantadosi,

2015), memoize combinations of primitives that are useful (O’Donnell, 2015) and

analogize from already learned knowledge (Cheyette & Piantadosi, 2017) to learn

about alternative conceptual architectures that children might adopt when learning

inter-related systems.

Recursive calls. Another natural way to think of learning an inter-related

system would be to allow for recursive calls. For example, a learner might use their

current concept for brother in their concept for uncle. We implemented this in

the model but we were unable to construct an acceptable lexicon space to evaluate

the model against developmental behavior. One issue with including recursive calls

is that the model sometimes constructs a useful new function composition, which

acts like a primitive in the hypotheses for other words but ultimately blocks a word

from being acquired. Additionally, adding recursive calls exacerbates the problem

of having all possible combinations of relevant hypotheses in the lexicon space by

prohibiting techniques like Gibbs sampling.

Rather than directly implementing recursive calls, we attempted to capture the

same intuitions by using the Lempel-Ziv compression of the lexicon in terms of
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the grammar as a prior over lexicons. This compression prior rewards the reuse of

primitive compositions across the lexicon in addition to a simplicity bias. We found

that when using a compression prior, the model predicts an inductive leap from most

of the kinship terms not being properly acquired to all of the kinship terms being

learned. We see this leap because the correct lexicon under the compression prior

is significantly less complex than the lexicons required in search space to get you

there (Figure 2.15). To remove this inductive leap, we could add a parameter that

penalizes recursion (as in Piantadosi et al., 2012); however, we think that the better

explanation would be through the development and integration of a more cognitively

grounded notion of hypothesis generation—i.e., an algorithmic level explanation.
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Chapter 3

How data drives early word learning: A
cross-linguistic waiting time analysis

The first year of life is an incredibly productive time for language learners. Babies

discover which sounds are in their language (Eimas, Siqueland, Jusczyk, & Vigorito,

1971; Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992), how speech is seg-

mented (Saffran, Aslin, & Newport, 1996), what common words refer to (Bergelson

& Swingley, 2012) and, towards the end of the first year, how to produce their first

word (Brown, 1973; Schneider et al., 2015). This growth is a complex endeavor that

requires relying on abilities in many domains—social and pragmatic understanding,

conceptual representation, joint attention, and acoustic and motor systems. How-

ever, little is known about how the development of non-linguistic factors influences

language growth. For instance, is the timing of language growth locked to factors

like the maturation of cognitive and motor systems (e.g. memory and attention),

or to the growth of children’s conceptual repertoire? Or, alternatively, is early lan-

guage learning primarily limited by the amount of data that children receive about

language itself?
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Evidence for a data-driven view of the timing of language learning comes from

studies showing the importance of linguistic input for early learning (Hoff, 2003;

Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Shneidman, Arroyo, Levine, &

Goldin-Meadow, 2013; Weisleder & Fernald, 2013). However, there are complications

for the view that data is all that matters. Maturational constraints are often thought

to play an important role in language learning (Borer & Wexler, 1987; Newport,

1990). Many words like function words (e.g. “the”) and number words (e.g. “two”)

are learned surprisingly late for their frequency, suggesting that the number of times

a word is heard by a child is not a definitive predictor of learning. This fact has

motivated hypothetical processes, including maturational constraints on function

words or syntax (Borer & Wexler, 1987; Modyanova & Wexler, 2007) and conceptual

or linguistic constraints in the case of number words (Carey, 2009).

At the heart of data-driven accounts is an ambiguity about how much data is

required. Experimental studies of word learning have revealed children’s ability to

acquire word meanings from single instances (Carey & Bartlett, 1978; Heibeck &

Markman, 1987; Markson & Bloom, 1997; Spiegel & Halberda, 2011) as well as from

the aggregation of word usage across multiple contexts (Smith & Yu, 2008). It is not

known which of these regimes governs the majority of lexical acquisition: Are most

words learned by aggregation of tens, hundreds, or thousands of examples, or from

a single informative instance?

Here, we develop a novel data analysis of word learning across thirteen languages

in order to address two questions about early word learning: when does it begin and

how much data does it require? These questions turn out to be interrelated—they are



CHAPTER 3. HOW DATA DRIVES EARLY WORD LEARNING 94

0.000

0.025

0.050

0.075

0.100

0.125

0 10 20 30 40 50

Age
P

ro
b
a
b
ili

ty
 o

f 
L
e
a
rn

in
g
 t
h
e
 W

o
rd a

b

c

Figure 3.1: Example acquisition ages under three example assumptions: (a) children
receive learning instances once a month from birth and require 24 total, (b) children
require 4 examples and receive one every 6 months on average, (c) children require 12
instances, coming once every month, but only begin accumulating data at 12 months.
Each predicts the same mean of 24 months (dotted line), but different shapes and
variances in the timing of acquisition.

coupled together by quantitative predictions that they make about the distribution of

ages at which children learn a word. To illustrate this, consider a simplified picture

of learning: suppose that a word is learned by age two. This could occur under

many different situations. Three illustrative examples are: (a) the child could start

accumulating data at birth, require about 24 cross-situational examples of the word,

and receive them about once a month; (b) the child could start accumulating data

at birth, require 4 examples, and receive them on average once every 6 months; (c)

the child could start accumulating data at 12 months, require 12 cross-situational

examples, and receive them once a month.

The central idea of our approach is that although (a), (b), and (c) predict the

same mean age of learning, they critically predict different distributions of ages at

which acquisition succeeds due to the statistics of waiting for data (see Figure 3.1).

Empirical measurement of the distribution shape could in principle distinguish these
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hypotheses, informing us about how data influences the process of word learning. For

instance, if the distribution supported (b), we might infer that there are few early

constraints on learning since data accumulation begins at birth, and that learning

required few examples. If the data supported (c), we might infer that cognitive or

maturational constraints delayed the accumulation of data substantially, and that

word learning required aggregating information across contexts.

The logic of our approach is to formalize the process of learning by accumulating

data. Following Hidaka (2013), we assume that learners successfully acquire a word

after k Effective Learning Instances (ELIs), or instances of the word that contribute

to the learner’s accumulating an amount of information about the word. We also

assume that ELIs arrive with an average frequency of λ per month1. However,

unlike previous work, we also infer the age s at which data accumulation begins and

implement our analyses in a Bayesian data analysis that is capable of inferring the

likely ranges of parameter values from children’s data. This Bayesian approach comes

with several distinct advantages (Kruschke, 2010; Wagenmakers, Lee, Lodewyckx, &

Iverson, 2008), including the ability to determine all three variables simultaneously,

with our uncertainty in each correctly influenced by uncertainty in the others. Thus,

our inferences about the amount of data required to learn a word are statistically

adjusted for our uncertainty over when learning that word began, and vice versa.

The analysis also has the potential to reveal that the data is not informative about

these variables, in which case we would find high uncertainty in the parameters given
1Hidaka (2013) compares three different generative models for Age of Acquisition distributions

including one with a changing rate. In this analysis, we extend on his best fitting model for
the greatest amount of words, which has a fixed rate. As this might seem counter-intuitive, we
summarise the models he suggested and justify our choice of model in Appendix 3.A.1.
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children’s data. The advantage of our analysis compared to Hidaka (2013)’s model

comparisons is that we can confidently focus on interpreting the parameter estimates.

3.1 Probabilistic assumptions

Our model requires three primary assumptions: (i) age of acquisition (AoA) con-

sists of two periods of time: a start time s before learning a word begins and an

accumulation time t, during which children are waiting for data; (ii) children learn

a word after observing a number k of ELIs of the word; and, (iii) these ELIs occur

stochastically, but at a fixed rate λ (measured here in ELIs per month). For instance,

s = 0, k = 24 and λ = 1 in example (a) above. Note that the model infers these

parameters from learning curves, not from counting putative ELIs in child-directed

data. It is likely that a constellation of factors are involved in determining whether

any given instance contributes to learning (counts as an ELI). Similarly start time s

could reflect several processes, including when children develop the ability to track

and remember the data that they need to learn a word, or when their conceptual

repertoire is ready to begin learning a word.

When data is observed stochastically with a rate λ that is uniform in time, the

number of ELIs actually received in a month will follow a Poisson distribution with

rate λ. Under these assumptions, the distribution of times t children must wait

before receiving k ELIs follows a Gamma distribution Γ(k, λ) with density,

f(t; k, λ) =
tk−1e−t·λ · λk

Γ(k)
. (3.1)
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Thus, f describes the distribution of time children must wait before observing

enough data to learn a word. The curves in Figure 1 are Gamma distributions with

the appropriate values for k and λ. Note that in a Gamma, the mean scales linearly in

the variance, meaning that if acquisition is driven by accumulating data, children’s

variance in learning times should scale with their mean learning time. Gamma-

shaped learning time distributions should be taken as a hallmark of data-driven,

constructivist accounts of learning (Xu, 2007; Kushnir & Xu, 2012) that applies to

any theory of development in which accumulating data is the primary force advancing

learners’ knowledge.

3.2 The data analysis model

Our data analysis model uses Bayesian techniques to recover k, λ and s from empirically-

measured learning curves. To do this, we require one data-analysis assumption that

the population of children studied is relatively homogeneous, meaning that we may

extend a word’s single s, k, and λ across children2. In this case, the proportion of

children who know a word at accumulation time T will approximate the cumulative

distribution function of Equation 3.1 at time T ,

F (T ; k, λ) =

∫ T

0

f(t; k, λ) dt. (3.2)

Figure 3.2 shows a graphical model of the relationships between these variables

and the observed data. At each age a, Na children were measured and xa of them
2Our conclusions hold even if we relax this assumption (see Appendix 3.A.2).
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Figure 3.2: Graphical model notation for our model. Nodes denote variables of
interest. Shaded nodes are observed variables. Plates denote groups of variables
over age (A) and and words (W ). In the text, we provide equations for a single word
and omit the subscript w.

reported having learned the word to either production or comprehension3. We model

the number of children producing/comprehending the word xa as being drawn from

a binomial distribution with Na trials and a probability of success equal to the

proportion of children who know the word given by Equation 3.2 at time t = a− s:

xa ∼ Binom(F (a− s, k, λ), Na) (3.3)

We assume uniform priors on these variables: k ∼ Uniform(0, 10000) ELIs, λ ∼

Uniform(0, 10000) ELI(s)/month and s ∼ Uniform(0, 1000) months. Bayesian infer-

ence in this generative model allows us to take the empirical acquisition curves and

determine posterior distributions for k, λ, and s for each word in each language.
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Figure 3.3: Points shows the proportion of English-speaking children (y-axis) who
know a word at each age (x-axis) as measured by comprehension (blue) and pro-
duction (green). Lines show the posterior mean parameters in the model (Equation
3.2), and X and O show the posterior mean start time of data accumulation for each
word. This generally shows good model fits, early start times for comprehension,
and somewhat later times for production.
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Figure 3.4: Model comparison of the Logit, Probit and Gamma models when trained
on the first half of comprehension and production learning curves and tested on
the full trajectory. Across words and languages, the correlations between observed
data and model predictions for the full curve are close to 1 with the Gamma model
showing the best fit.

3.3 Results

3.3.1 The cumulative Gamma matches observed word learn-
ing curves

Figure 3.3 shows a general visualization of the model fit across a variety of English

words. Despite its simplicity, the model closely accounts for the empirical learning

trajectories across word types for both comprehension and production. Quantita-

tively, correlations between predicted values and the behavioral data are near 1.0 for

each language (see Figure 3.8) meaning that the model is able to capture the overall

shape of acquisition across languages. More importantly, the model is able to more

successfully predict learning than more standard alternatives: a probit (McMurray,
3We fit the comprehension and production data separately.
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Figure 3.5: Box plots of the distribution of k, λ and s across words in each language.

2007) and a logistic model. To test this, we divided the learning curve for each word

into two halves, where we fit k, λ and s for each word on the first half and then

computed the correlation between model and human data across words and ages on

the full curves. The Gamma distribution fit quantitatively out-performs either the

probit or the logit across most languages (see Figure 3.4).

3.3.2 On the order of 10 ELIs are needed to learn a word

The order of magnitude of the estimated parameters are informative about the un-

derlying mechanisms of learning, as they characterize when learning starts (s), how

many ELIs are needed (k) and how frequently they occur (λ). Figure 3.5 shows

the mean values of k, λ and s for each language. The box plots for English further

broken down based on MCDI semantic category are similar (see Figure 3.9).

Figure 3.5a,d shows that, across languages, the order of magnitude of k is around
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10 for production, with slightly lower values for comprehension. It is important to

focus on the order of magnitude, not the exact numerical values, because the order of

magnitude of our parameter estimates are robust to noise (see Appendix 3.A.2). The

important issues in language development can still be distinguished based on order

of magnitude. We primarily interpret Figure 3.5 as showing that languages agree in

order of magnitude of their estimates4. Thus, children do not require hundreds or

thousands of instances of a word to learn, even for words that may be very frequent,

nor do they learn from a single instance. Instead, learning is likely focused around ten

critically informative learning instances. These findings demonstrate the importance

of cross-situational statistics over single examples and is consistent with the finding

that children do not retain fast-mapped meanings (Horst & Samuelson, 2008).

3.3.3 ELIs of a word occur roughly every two months

The variable λ characterizes the estimated rate at which ELIs of a word occur.

Figures 3.5b,e show that ELIs of a word occur once every two months (λ ≈ 0.5),

indicating that ELIs are relatively infrequent for an individual word. However, be-

cause children learn many words simultaneously, ELIs of any word may in fact be

quite frequent. For instance, if children track statistics on 1000 early words, and

observe an ELI for each word on average once every two months, they will receive

around 17 ELIs per day.
4We suspect that the greater uncertainty around estimates for Hebrew and Swedish is due to

data sparsity (see Figure 3.10).
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Figure 3.6: The bar plot shows percent of the variance in age of acquisition times
explained by accumulation time (suggesting data-driven learning). The triangular
points shows the percent of age of acquisition time spent accumulating data. Error
bars and point ranges represent bootstrapped 95% confidence intervals. Outliers
(< 2.5% of the data) were removed for this analysis (see Methods).

3.3.4 Data accumulation starts around 2 months

The start times in Figures 3.5c,f show that learning begins early: approximately by

two months in the case of comprehension measures. The starting age is somewhat

later when curves are fit to production measures, possibly because production may

require motor and speech systems to be working before production can progress.

This may indicate that although maturational factors play little role in learning

as measured by comprehension, production depends on the development of other

cognitive or motor systems.

3.3.5 Early word learning is primarily data-driven

The model assumes that AoA is the sum of two time periods: start time s and

accumulation time t. There are two measures we derive from these parameters to

quantify the extent to which early word learning is data-driven: the percent of total
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AoA time spent accumulating data, and the percent of variance in AoA explained

by variance in accumulation times. If early word learning is primarily constrained

by maturation, the majority of acquisition time should not be spent accumulating

data and the majority of the variance in acquisition times should be explained by the

variance in start times s. On the other hand, a data-driven account of early word

learning would expect the majority of acquisition time to be spent accumulating data

and the majority of the variance in acquisition times to be explained by variance in

accumulation times t. Figure 3.6 shows the proportion of total acquisition time and

the variance in acquisition times that is due to t (accumulating data) rather than

s (start times). We find that generally the majority of acquisition time is spent

accumulating data and the variance in accumulation times explains the majority of

the variance in acquisition times. Taken together, this indicates that data-driven

factors are the primary drivers of early word learning.

3.3.6 Learning instances are weakly correlated with log fre-
quency

Under a simple view that most usages of a word are informative about its meaning,

our estimates of k and λ should be surprising; word frequencies vary over several

orders of magnitude (Zipf, 1949), yet the inferred k and λ values do not. This means

that ELIs cannot be very strongly correlated with frequency. Most of the time a

frequent word is used, it is not an ELI.

To investigate the relationship further, we computed the correlation between

the estimated k, λ and s values for each word in English and the log frequency
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Figure 3.7: Correlations between CHILDES frequency for words in English and es-
timated parameter values. Top row: For comprehension, there is a small correlation
between frequency and k and no correlation between frequency and λ and frequency
and s. Bottom row: For production, the correlations between frequency and k, fre-
quency and λ, and frequency and s are very weak and only significant when frequency
is log transformed.

as measured in CHILDES (MacWhinney, 2000). For comprehension, there is only

a small correlation between the estimated k parameter and frequency (k : r =

−0.14, p = 0.01). For production, there is a modest correlation (k : r = 0.19, p <

0.001; λ : r = 0.32, p < 0.001; s : r = −0.22, p < 0.001) as observed by Hidaka

(2013). But what is notable is the weakness of the correlation (see Figure 3.7)—it is

not as though doubling the quantity of input will double the number of ELIs. This

finding is compatible with findings of frequency effects in word learning (Ambridge,

Kidd, Rowland, & Theakston, 2015; Hoff, 2003; Huttenlocher et al., 1991; Shneidman

et al., 2013; Weisleder & Fernald, 2013), but suggests that frequency will be less

important than the frequency of ELIs (see also Hoff, 2003).
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3.4 Discussion

We view the Gamma model not as a mechanistic learning account, but instead as a

scientific tool for understanding the basic forces in early language acquisition. Unlike

characterizations in terms of mean acquisition ages, the parameters s, k and λ are

psychologically meaningful in terms of a causal process that likely supports part of

word learning, data accumulation (Hidaka, 2013). Our analysis of empirical learning

curves strongly suggests that data accumulation begins very early, that production

may be delayed due to maturational factors, and that typical words take on the order

of ∼ 10 ELIs to learn, not hundreds of occurrences and not a single occurrence or two.

The model also suggests that the informative data points for word learning occur

relatively infrequently, about once every two months, and that these occurrences

are not strongly related to a word’s overall frequency. Moreover, the mechanisms of

data accumulation not only provide the best quantitative fit to learning curves, they

explain nearly all of the variance in when children learn a word.

This analysis has capitalized on the existence of large corpora of acquisition

trajectories across children. In particular, the key variables of interest, data amounts,

data rates and the time at which data is first considered, are discovered entirely from

children’s acquisition trajectory—not from recordings of children’s input. While it

may seem tempting to address these questions of acquisition with an intensive home

recording study (D. Roy et al., 2006) or an evaluation of child-parent interactions

(MacWhinney, 2000), these approaches come with the challenge of delineating which

instances of a word concretely contributed to learning. For example, a word use might

only aid acquisition if the child is attentive and receptive, and the referent is clear,
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which might not be observable in those data sets. Given that we have found that

overall frequency is a weak predictor of the rate of ELIs, the detailed measurement of

just parental productions will not fully clarify the relevant data sources for learning.

Instead, our work takes a different tack, looking to find evidence of data-driven effects

writ large in the distribution of learning times for words.

This work leaves open a central question: what makes a usage of a word an ELI?

The weak correlation between the parameters and word frequency suggests that ELIs

are rare—and perhaps even intentional. It is likely that children actively decide

what stimuli they engage and deeply process (Kidd et al., 2012; Kidd, Piantadosi,

& Aslin, 2014), which could place an internal yoke on the rate of ELIs. Extrinsic

factors probably also play a role though, as seen by the correlations with frequency.

Analogously, these analyses raise the question of what determines differences in k and

λ across words and languages. Future research should attempt to characterise the

impact of external factors, such as semantic content (M. N. Jones, Johns, & Recchia,

2012) and phonotactic probability (Storkel, 2001), on k and λ. Our framework

provides the initial step at connecting such factors to the data accumulation process

that implicitly supports all existing models of word learning.

It is also important to note the limitations of the MCDI data and our model.

First, we restrict all of our conclusions to the early learned words covered by the

MCDI. It will be important to extend this model beyond the age range of the exist-

ing MCDI. Children are flexible learners and it is probable that an older child adopts

a variety of strategies, which may influence the data-driven process. For example,

older children might be able to bootstrap from their existing vocabulary/syntactic
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constructions or their intuitive theories of the world. Additionally, the lack of vari-

ability in the MCDI words constrains the empirical testing of many hypothesized

constraints on vocabulary acquisition (e.g., Markman, 1990). Applied to the ap-

propriate data, our approach is a suitable tool to evaluate these constraints at the

computational level. Further, we chose to encode maturation as a constant offset

from birth to address our main questions. This is an appropriate operationalization

but a coarse distinction and future research should address this.

3.5 Conclusion

Our results have shown that under a simple model of learning as waiting for data, we

may estimate the amount of data required to learn a word, the rate at which useful

instances occur and the start time of learning from group-level learning curves. Our

results robustly demonstrate that on average words require on the order of ∼ 10

ELIs to learn across multiple languages. ELIs appear to occur about once every two

months, relatively independent of frequency. Children start accumulating data very

early, but their learning may be delayed in the case of production while systems like

motor processing mature. Empirically, our model provides close fits on held-out data

and suggests that waiting for data is a primary constraint on early word learning,

consistent with views emphasizing the important role that data plays in learning and

development.
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3.6 Methods

We fit k, λ and s within individual words and languages on data retrieved on June

16th 2015 from Wordbank (Frank et al., 2015), a repository for MCDI instruments

(Fenson et al., 2007). This yielded cross-sectional data from thirteen languages (see

Figure 3.10 for further description). For each word in each language, k, λ and s were

fit using JAGS (Plummer et al., 2003) and corresponding R packages, rjags and

runjags. For every word, four chains were run for a total of 1.25 million steps with

a thin of 1000 steps between each saved step. The chains converged (R̂ < 1.2) for all

2397 words in the comprehension and 9420 words in the production measure. For

our data vs. maturation analyses, we removed outliers (< 2.5% of the data), that

were all syntactic constructions as opposed to lexical items. The forward predicting

model was trained on the first half of the data using the same method. In these runs,

88 words failed to converge for comprehension and 78 words failed to converge for

production and were excluded from further analysis. Code and parameter estimates

are available from the first author and our lab’s webpage.

3.A Appendix to Chapter 3
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Figure 3.8: Model comparison of the Logit, Probit and Gamma models when trained
on the full learning curve. Across words and languages, the correlations between
observed data and model predictions are close to 1.
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Figure 3.9: Box plots of the mean k, λ and s values measured for English words split
by MCDI semantic category.
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Figure 3.10: Number of completed MCDIs at each age for each language and words
for each instrument. Note the y-axes differ in each panel.
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3.A.1 Model Justification

Hidaka (2013) conducted a model comparison of three different generative models

for the AoA distributions: a rate-change learning model (i.e., a Weibull model), a

cumulative learning model (i.e., a Gamma model), and a cumulative-and-rate-change

learning model (i.e., a Weibull-Gamma model). In the rate-change model, a learner

only requires a single ELI and each month the initial probability of observing an

ELI, λ, changes (presumably increases) polynomially, with an exponent of δ. The

cumulative learning model is the gamma model we chose to implement (without a

start time parameter), i.e., a learner requires k ELIs to learn a word and ELIs come

stochastically but at a fixed rate, λ ELIs/month. In the cumulative-and-rate-change

model, a learner requires k effective learning instances to learn a word and these

instances have a base rate λ which changes by a power of δ each month.

The cumulative distribution function of these three models describes the prob-

ability of a child having learned a word as a function of age a. The equations for

these three models follow:

Weibull Model

F (a;λ, δ) = γ(1, (λ · a)δ) (3.4)

Gamma Model

F (a; k, λ) =
γ(k, λ · a)

Γ(k)
(3.5)

Weibull-Gamma Model

F (a; k, λ, δ) =
γ(k, (λ · a)δ)

Γ(k)
(3.6)
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where γ(k, b) is the lower incomplete gamma function,

γ(k, b) =

∫ b

0

tk−1e−tdt. (3.7)

and Γ(k) is the gamma function:

γ(k) =

∫ ∞

0

tk−1e−tdt. (3.8)

The parameter k is interpreted the same as above—i.e., the number of ELIs re-

quired for learning. The parameter b corresponds to the expected number of instances

observed at that time.

Hidaka (2013) fit these models for 652 productive vocabulary words in the MCDI.

He found that when aggregating over words, the cumulative-and-rate-change model

has the best fit as measured by Bayesian Inference Criterion (BIC). However, when

he looked at each word individually and compared the BICs for the different models,

he found that the cumulative model fits best for 50% of the words. This means

that the cumulative-and-rate-change model is a good overall model of early word

learning5, but the generative process that best captures how individual words are

learned is the cumulative (Gamma) model.

We chose to use and extend the cumulative (Gamma) model for our purposes for

two reasons. First, the majority of the individual words fit by Hidaka (2013) were best

fit by the Gamma model, making the option of choice for capturing individual word

curves. Second, the Gamma model has a more straightforward interpretation than
5This is not too surprising considering both the cumulative (Gamma) model and the rate-change

(Weibul) model are special cases of the cumulative-and-rate-change model.



CHAPTER 3. HOW DATA DRIVES EARLY WORD LEARNING 115

the rate change models. While the k parameter retains the same units (number of

ELIs) across all models6, the interpretation of the parameter b differs across models.

For the gamma model, the unit for b—i.e., expected ELIs, does not change across

time. However, in the rate change model, b is raised to an exponent, giving it a much

less clear interpretation. It effectively gives rise to some polynomial of time, but not

one which is to our knowledge motivated by independent considerations. These two

factors lead us to build off the gamma model rather than the rate change model,

even though the latter fits better in one analysis.

Lastly, we can directly compare the performance of cumulative-and-rate-change

models and our model in predicting our data. These results show that the model

we focus on, a Gamma model with start time, does a much better job than oth-

ers in predicting learning curves. Figure 3.11 displays the coefficients of determi-

nation (across learning curves) of individual English words7. This figure contains

four models: Hidaka (2013)’s estimated parameters for the Weibull-Gamma (Hi-

daka_WG), a Bayesian Data Analysis8 (BDA) Weibull-Gamma model (BDA_WG),

a BDA Weibull-Gamma with a start time parameter (BDA_WGs), and a Gamma

model which includes a start time (BDA_Gs) (the primary one in our analysis).

Comparing Hidaka’s Weibull-Gamma to the BDA_WG, we see that the BDA_WG
6In a Weibull distribution k = 1 ELI
7Code and parameter estimates available on lab website.
8For the Bayesian Data Analysis models, the same inference procedure was used as in the main

paper. The prior on the rate change parameter was δ ∼ Gamma(2.25, 1.25). For the BDA_WG
model, 319 of the 797 English MCDI words converged and were used in the analysis. Although the
number of words successfully fit under this model seems low, Hidaka’s WG parameter estimates
only yield learning curves for 117 words. The WG parameters for the rest of the words Hidaka fit
describe learning curves that are 1 or 0 over the window of data. For the BDA_WGs, 698 of the
797 words converged and were used in the analysis.
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Figure 3.11: Model Comparison of Hidaka’s Weibull-Gamma (Hidaka_WG), a
BDA Weibull-Gamma (BDA_WG), a BDA Weibull-Gamma with a start time
(BDA_WGs), and our Gamma model, which includes a start time (BDA_Gs). The
low contrast points represent the coefficient of determination for individual words.
The points represent the mean and their error bar’s represent bootstrapped 95%
confidence intervals.
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provides a slightly better fit to the Wordbank MCDI data. Unfortunately we cannot

distinguish if this might be due to the increased data amounts the parameters were

estimated from or the robustness of Bayesian Data Analysis as a method. More

interestingly, the inclusion of a start time parameter to the BDA_WG significantly

increases the model fit to the data. Nonetheless, the Gamma model (BDA_Gs) still

outperforms all of the cumulative-and-rate-change models. In other words, on these

data sets, the model with a start time and no rate change provides the best fit.

However, given the nearness in fit between the BDA_WGs and our model, we

compared the parameter values to see if the rate change parameter significantly

differed from 1, which would suggest very little to no change in rate. We find that

for 98% of the words, the rate change parameter is not significantly different than 1.

This explains why BDA_Gs, which has this parameter set to 1, can perform so well.

To summarize, these results justify the use of a gamma model with start time in

our primary analyses. However, it is important to remember that other age ranges

or data sets may necessitate models with different probabilistic assumptions.
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3.A.2 Relaxing Our Data Analysis Assumption
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Figure 3.12: Recovered parameters estimates for simulations with varying percent
model-internal noise (top row) and model-external noise (bottom row). The dashed
line represents the generating parameter value. Point ranges reflects 95% boot-
strapped confidence interval.

In our analysis, we make the data analysis assumption that the parameter val-

ues we infer will be the same across children; however, it is widely acknowledged

that children implement different strategies for language learning (Brown, 1973). To

examine how the model works when our assumption is violated, we simulated data

with two different types of noise: model-internal noise—i.e, noise in the parameter

values, and model-external noise. Model-internal noise might reflect individual dif-

ferences in the learning process. Whereas, model-external noise might reflect things

like measurement error.

We simulate data with model-internal noise by sampling parameters as follows:
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k ∼ N(10,
√
10v)

λ ∼ N(0.5,
√
0.5v)

s ∼ N(4,
√
4v)

AoA ∼ Γ(k, λ) + s

(3.9)

where v is the percent noise. To assess internal noise, we added either 0.1%,

1% and 5% noise. As the percent of internal noise increases, the shape of the AoA

distribution to be fit changes significantly. For example, adding 1% internal noise

increases the standard deviation of the AoA distribution by one month; whereas,

adding 5% internal noise increases the standard deviation of the AoA distribution

by at least 20 months. For each percent noise, we simulated age of acquisition data

for 1000 children. We binned the simulated data across the age range of 15− 36 and

ran the model on the binned data. We repeated this process 1000 times.

We expect that the recovered parameters from the model runs should be similar

to the generating parameters. The results are shown in the top row of Figure 3.12.

First, note that with only 0.1% model-internal noise added, the recovered parameters

are virtually the same as the generating parameters. Second, we find that under a

reasonable percentage of added model-internal noise, the model recovers parameter

values on the same order of magnitude as the generating parameters, suggesting that

model-internal noise has a small effect on the order of magnitude of the parameter

values. Lastly, we find that as the percent of model-internal noise increases, the

recovered parameters for k and λ are under-estimated and the recovered parameter
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for s is over-estimated.

Given that the data in Wordbank (Frank et al., 2015) , like all data, is inherently

noisy, these simulations would suggest that our estimates for k and λ should be in-

terpreted as lower bounds and our estimates for s should be interpreted as an upper

bound. In effect, the presence of model-internal noise under-estimates the contribu-

tion of data-driven processes to word learning and over-estimates the contribution of

maturational processes. Despite this, we still find that the majority of the variance

in early word learning can be explained by the simplest data-driven processes, i.e.,

waiting for data.

We simulate data with model-external noise by sampling ages of acquisition as

follows:

a ∼ Γ(10, 0.5) + 4

AoA ∼ N(a,
√
av)

(3.10)

To assess external noise, we added either 0.1%, 1%, 5%, 10% or 25% noise. As

can be seen in the bottom row of Figure 3.12, We find that the model is remarkably

robust at recovering the generating parameters when model-external noise is added.
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Chapter 4

Universal and cultural specific processes in
exact number word acquisition

While there is numerical structure in the world, mathematics, itself, is a human in-

vention. Humans have two core conceptual systems for dealing with numbers/math:

the object file system (Carey & Xu, 2001) and the approximate number system

(Dehaene, 1997). The object file system allows humans to track and manipulate ap-

proximately four objects (Feigenson & Carey, 2003; Leslie, Xu, Tremoulet, & Scholl,

1998) but fails as the number of objects increases (Feigenson & Carey, 2005). On

the other hand, the approximate number system allows us to represent large magni-

tudes; however, as the set of objects to maintain increases, the fidelity with which

we represent this set decreases (Dehaene, 1997). Neither of these core conceptual

systems fully support the rich and precise numerical life prevalent in industrialized

societies. Conceptual structures for exact number (e.g., counting systems) are cog-

nitive technologies (Frank, Everett, Fedorenko, & Gibson, 2008) that people develop

to handle the need for exact number representations for large quantities. As a re-

sult, counting systems are fundamentally cultural innovations shaped by the societal



CHAPTER 4. UNIVERSAL AND CULTURAL SPECIFIC PROCESSES 122

needs of a community. Despite what would appear to be a common problem, count-

ing systems have considerable diversity in, for example, the base of the system, the

highest number represented by the system and the iconicity of the writing systems

(Epps, Bowern, Hansen, Hill, & Zentz, 2012; Beller et al., 2018). While economic

pressures have pushed cultures to adopt the same numerical systems, the problems

and need/desire for number still varies across cultures (Everett et al., 2005; Núñez,

2017). Therefore, number acquisition is a prime case study for teasing apart cultures

influence on the human learning mechanisms.

The development of exact number is an important case study in conceptual

change (Carey, 2009): how do humans create a conceptual system that goes be-

yond the capacity of our core knowledge? Given the significant diversity in the

numerical systems of the world, it is actually surprising that children’s development

shows the same pattern of acquisition across variable cultures (e.g., Sarnecka et al.,

2007; Le Corre, Li, Huang, Jia, & Carey, 2016; Piantadosi, Jara-Ettinger, & Gibson,

2014). Children begin by memorizing their number words. Then, they slowly learn

how to map quantities of objects to number words in the count list. They initially

gain competence in mapping sets of one to one, then sets of two to two, three to

three, and four to four. Instead of repeating this process indefinitely to learn the

meaning of all exact number words, children appear to master the logic of counting

after learning the meaning of four, recognizing that the cardinality of a set of objects

is the last number in the count list—i.e., the Cardinal Principle. Children demon-

strating mastery of only a subset of the count are often referred to as subset knowers;

whereas, children who have mastered the cardinal principle are often referred to as
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CP-knowers. This pervasive developmental trajectory suggests that the fundamental

learning problem drives the acquisition of numerical concepts.

At the same time, anthropological evidence suggests the timing of numerical

knowledge acquisition varies across cultures (Saxe & Posner, 1983) as different cul-

tures still place different value on number and the tasks in which number is used. For

example, the unschooled children of merchants are often just as adept at numbers as

schooled children but far superior to those of unschooled children (Posner & Baroody,

1979). From a different angle, the primary uses of number can determine whether

it’s worthwhile to learn a full blown system of numbers. For example, Brazillian

candy-sellers are primarily concerned about small financial transactions and solve

the problem not by learning a full number system but by learning a small set of

shuffling algorithms with colored papers (i.e. money) to complement their approx-

imate number system (Saxe, 1988b, 1988a). Looking specifically at the acquisition

of exact number words, researchers have also reported cross-cultural differences in

acquisition. Specifically, Mandarin speaking children are slower to acquire one than

English speaking children (Le Corre et al., 2016). Similarly, Japanese speaking chil-

dren are slower to acquire one than English and Russian speaking children (Sarnecka

et al., 2007; Barner, Libenson, et al., 2009). Saudi Arabic and Slovenian children

are faster to acquire two than English and Mandarin speaking children (Almoammer

et al., 2013). Slovenian children from urban environments are faster to learn two

than Slovenian children in rural environments where there is also a dialect difference

(Marušič et al., 2016). Tsimané children acquire exact numerical number much later

than those other cultures (Piantadosi et al., 2014). The pattern of differences across
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cultures has been attributed to the differences in linguistic cues, specifically number

morphology and quantifiers (Le Corre & Carey, 2007; Le Corre et al., 2016; Sarnecka

et al., 2007; Barner, Libenson, et al., 2009; Barner & Bachrach, 2010; Barner, Chow,

& Yang, 2009; Almoammer et al., 2013; Marušič et al., 2016), while trying to control

for other cultural differences as much as possible.

Here, we compile a large (N = 1772) cross-cultural (n = 8) data set of exact num-

ber acquisition. We map how various cultural differences would influence learning

under a computational model of exact number acquisition (Piantadosi et al., 2012).

Using a novel linking hypothesis based on Mollica and Piantadosi (2017a); Hidaka

(2013), we extend this ideal learner model to make predictions about behavior at a

given time, as opposed to at a given amount of data. This allows us to conduct a

descriptive Bayesian Data Analysis (Tauber et al., 2015), where we learn the param-

eters of the model from the empirical data and then interpret the parameters of the

model in terms of universal and cultural-specific influences. Specifically, how does

culture influence the learning process? We consider two possibilities: culture influ-

ences the rate at which children use data or culture influences how children generate

hypotheses. Finally, we round out our discussion with limitations of our model and

future directions of its application.

4.1 Model

To model children’s acquisition of exact number words as a function of data, we start

with the ideal number word learning model of Piantadosi et al. (2012). In an ideal
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learner model of development, we must specify the space of possible hypotheses h a

learner might entertain (e.g., if there is only one object say “one” otherwise guess),

any prior biases they place on hypotheses, and how they evaluate their hypotheses

against data D (i.e., likelihood function). The developmental trajectory can be then

be modeled as the movement of probability mass over a hypothesis space as a function

of data, following Bayes rule:

P (h|D) ∝ P (D|h)P (h). (4.1)

In this model, a data point consists of a word w and a context c (e.g., (three,

) ). To illustrate learning in a natural environment, Piantadosi et al. (2012)

simulated data points according to CHILDES frequencies for number words (MacWhinney,

2000). Larger corpus investigations have found similar frequency ratios in adult

speech across several different languages and modalities (Dehaene & Mehler, 1992).

A learner evaluates their hypotheses based on the probability that their lexicon L

generates observed data points:

P (D|h, α) = P (w|c,L, α) =


α + 1−α

N
if L(c) = w

1−α
N

else
, (4.2)

where α is a reliability parameter and N is the highest number a learner can count1.

Piantadosi et al. (2012) assumed a simplicity prior over hypotheses. Instead of as-

suming a prior, a strength of our model is that we infer the prior over hypotheses
1For all analyses in the paper α was set at 0.9 and N at 10.
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from developmental data, following the rich literature on prior inference (Griffiths &

Tenenbaum, 2011; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010).

The primary limitation in connecting ideal learner models to actual developmen-

tal data is that we often only observe children’s behavior at a given time, without

any measure of how much data they have seen or more importantly used. When it

has been attempted, the most common approach to linking model predictions as a

function of data to behavioral observations at given times is to fit some function of

time to the mean age of the behavior (e.g., logistic regression). While this seems

reasonable, these models have poor predictive fit compared to models that fit both

the mean and variance of a learning curve (Mollica & Piantadosi, 2017a). A con-

siderable amount of information about how data relates to time is conveyed by the

variance in acquisition times and can be used to make better predictions for behavior

as a function of time and inform the underlying process of data use (Hidaka, 2013;

Mollica & Piantadosi, 2017a). This is the approach we will adopt for our model.

Other studies trying to gain insight about behavior as a function of time (including

those by the first author) have made the false assumption that measured estimates

of data points in a learner’s environment at a given age (e.g., from a corpus study)

reflect the amount of data a child uses to reach some learning outcome. This is

often an implicit assumption in computational models that make use of corpora as

naturalistic input. These approaches often pool variance caused by maturation with

variance in learning. Further, there is evidence to suggest that children filter their

input (Perkins et al., 2017; Kidd et al., 2012) and that the data they receive is not

always reliable (Medina et al., 2011; Cartmill et al., 2013).
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Borrowing from techniques in survival analysis, Chapter 3 describes one of the

simplest generative processes for how data amounts, the rate of data accumulation

and the onset of learning predict the timing of lexical acquisition for children’s earliest

learned words. In their model, an age of acquisition consists of two durations of time:

maturational time s before attending to data and time spent waiting for data t. Data

accumulate at a fixed rate λ. After observing k data points, a child has acquired

the same behavioral performance as an adult. Mollica and Piantadosi (2017a) found

that across 14 different languages, the age of acquisition curves for children’s earliest

learned words were best explained and predicted by this constant rate generative

process.

Our model in Figure 4.1a represents a joint probability distribution:

P (t, λ, n, θ,d, h, k) = P (k|h)P (h|D)
n∏

d=0

P (d|θ)P (θ)P (n|t, λ)P (λ)P (t). (4.3)

The shading in the figure reflect variables that we observe. The model describes a

generative process: At a given age t and rate of effective learning instances (ELIs)

λ, the number of ELIs that children observe n is given by a Poisson distribution:

n ∼ Poisson(λt). (4.4)

We assume that the type of ELIs (e.g., (one, ) or (two, )) will vary according

to the measured environmental distribution of number words ϕ⃗w:

D ∼ Multinomial(n, ϕ⃗w). (4.5)
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Figure 4.1: The full plate diagram for our data analysis model (left) and the plate
diagram after marginalizations (right).

For mathematical convenience, we represent the probability of the environment gen-

erating a data point d that would be responded to correctly at particular knower

level k as:

d ∼ Bernoulli(θk), (4.6)

where θk =
∑

w∈k ϕw. A learner will then use this dataset D to update their beliefs

about number hypotheses following Equation 4.1. For our data analysis, we make

two simplifications of the model in Figure 4.1b. First, we marginalize over all possible
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amounts of ELI n and datasets D:

P (k|t, λ, θ, α, h) = P (k|h)P (h)
∞∑
n=0

P (n|t, λ)
n∑

d=0

∏
i

P (di|θ)P (di|h)

= P (k|h)P (h)e
λt

[(
(1−θk)· 1−α

N

)
+

(
θk·
(
α+ 1−α

N

))
−1

]
.

(4.7)

Second, we only consider six knower level hypotheses corresponding to the knower

level patterns (i.e., Non, One, Two, Three, Four and CP). Marginalizing over hy-

potheses, we can rewrite Equation 4.7 as:

fk(t;λ, θk, γk) = P (k|t, λ, θk, α) = γke
λt

[(
(1−θk)· 1−α

N

)
+

(
θk·
(
α+ 1−α

N

))
−1

]
, (4.8)

where γk represents the prior probability for the hypothesis. The full derivations of

Equations 4.7-4.8 can be found in Appendix 4.A.1.

Translating this to a data analysis, at each age, we model the number of children

for each knower level xt as being drawn from a multinomial distribution with Nt

trials and a probability of success given by Equation 4.8:

xt ∼ Multinomial(fk(t;λθkγk), Nt). (4.9)

4.1.1 The influence of culture in our model

From the remaining parameters in our model (Figure 4.1b), there are two ways in

which we could observe culture influencing the learning process. First, culture could

shape the availability of data and thus, the rate of ELIs λ. For instance, Mandarin
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children grow up in an environment with twice as much number data (Le Corre et

al., 2016) as other Western Educated Industrialized Rich and Democratic (WEIRD)

children, but still with the same type distribution of data as other WEIRD countries

(Dehaene & Mehler, 1992). As a result, Mandarin learners might have a faster rate

of ELIs λ. Similarly, culture can shape how much attention children pay to number.

For example, children in WEIRD cultures receive significant formal instruction in

number compared to children in non-WEIRD cultures. The explicit engagement

with number might increase the rate of ELIs. Second, cultures could influence how

easy it is to generate a knower level hypothesis either through the primitives learners

bring to the task or the weight learners place on those primitives—i.e., the prior

over hypotheses γk. For example, if a culture focuses on numerical tasks that don’t

require exact number but privilege faster approximate number computations, learners

may be more likely to start generating hypotheses based on approximate number

computations.

To assess differences in rate and differences in priors, we construct a series of

hierarchical Bayesian models and analyse a large cross-linguistic dataset of children’s

number knowledge. The first model we consider is a baseline multinomial logistic
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regression with random slopes for knower level and age by culture:

B0k ∼ N (0, 32)

B1 ∼ N (0, 32)

σB0k
∼ Uniform(0.0001, 10000)

σB1 ∼ Uniform(0.0001, 10000)

β0kc ∼ N(B0k, σB0k
)

β1c ∼ N(B1, σB1)

P (k|t) = eβ0kc+β1c·age∑K eβ0kc+β1c·age
.

(4.10)

The second model is a universal model (i.e., Constant Rate, Constant Prior—CR-

CP) in which there are no differences across cultures (see Figure 4.1b). We create

a cultural rate model (Varying Rate, Constant Prior—VR-CP) by extending the

universal model with a hyperprior on the rate of ELIs and letting each culture have

a different rate:

Λ ∼ N (0, 32)

σλ ∼ Uniform(0.0001, 10000)

λc ∼ N (Λ, σλ).

(4.11)

We create a cultural prior model (i.e., Constant Rate, Varying Prior—CR-VP) by

extending the universal model with a hyperprior on the knower level prior and letting
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each culture have a different knower level prior:

Γk ∼ N (0, 32)

σγk ∼ Uniform(0.0001, 10000)

γkc ∼ N (Γk, σγk).

(4.12)

Lastly, we consider a full culture model (i.e., Varying Rate, Varying Prior—VR-VP)

where culture simultaneously influences both rate of ELIs and knower level priors.

The plate diagrams for these culturally influenced models are illustrated in Figure

4.2.

For each of these models, we infer the relevant rate and prior parameters/hyper-

parameters using Bayes Rule. Considering the universal (CR-CP) model as an ex-

ample,

P (λ, γk|k, t, θ) ∝ P (k|t, θ, λ, γk)P (λ)P (γk). (4.13)

4.2 Data Pre-processing

Our model serves as an explanatory vehicle linking the rate of ELIs and the knower

level prior to the pattern of behavior children demonstrate when learning exact num-

ber, which provides us leverage to investigate culture’s influence on the learning pro-

cesses through those factors. Our model takes as input measurements of children’s

knower level and their age. The standard measure of children’s knower level knowl-

edge at a given age is revealed in the Give-N task (Wynn, 1990, 1992). In the Give-N

task, children are presented with a pile of objects. On each trial, the experimenter
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Figure 4.2: The plate diagrams for our model comparisons.
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Study Cultures N kids
Almoammer et al., (2013) English 77

Mandarin† 79
Saudi Arabic† 83

Barner et al., (2009a) English† 101
Barner et al., (2009b) Japanese† 104

Boni et al. (unpublished) Tsimané 100
Jara-Ettinger et al., (unpublished) Tsimané 401

Krajcsi et al., (2018) Hungarian 151
Marusic et al., (2016) Slovenian† 343

Piantadosi et al., (2014) Tsimané 92
Sarnecka et al., (2007) English 91

Japanese 48
Russian 59

Wagner et al., (2016) English 43

Table 4.1: Sources of compiled data. † denotes pre-processed knower level as opposed
to raw Give-N data.

asks the child to give N of the objects to the experimenter and records how many

objects the child hands over. The task is often titrated up so as to minimize the

number of trials required to classify a child’s knower level. While the rule to deter-

mine knower level varies slightly across studies, knower level classification seems to

be robust to the form of the task (Lee & Sarnecka, 2011). Overall, the Give-N task

is a conservative measure of children’s number knowledge (Wagner et al., 2018).

We compiled data from ten cross-sectional studies detailed in Table 4.1, resulting

in 1772 children across eight cultures and seven language families. To convert raw

Give-N data to knower levels, we used the Bayesian data analysis model developed

by Lee and Sarnecka (2010, 2011). See Appendix 4.A.2 for more details. Figure

4.3 shows the distribution of ages at which children are at each knower level for the

different languages.
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Figure 4.3: Distribution of ages at which children progress through knower level
patterns across cultures.
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Figure 4.4: Expected log pointwise density ratio for each model (y-axis) relative to
a multinomial baseline model (Equation 4.10). Higher ratio values reflect greater
predictive ability. Line ranges reflect standard errors.

4.3 Results

To compare models, we use leave-one-out cross-validation with Pareto-smoothed im-

portance sampling (Vehtari, Gelman, & Gabry, 2017). In standard cross-validation

methods, the data is divided into k folds. The model is trained k times, leaving

out a different fold to serve as a test set each time. The model’s predictive perfor-

mance on each held-out fold is then averaged to serve as a performance score. When

k is less than the total number of data points, the resulting prediction estimates

are slightly influenced by dependencies between how the data points were grouped

into folds. This is avoided by setting k to the number of data points—i.e., leaving

one data point out each fold. As training a model is computationally expensive, we

do not calculate the leave-one-out score exactly; instead, we use Pareto-smoothed

importance sampling to approximate the computation from values saved when ini-

tially fitting the model. The resulting predictive score is the expected log pointwise

predictive density (elpd).

In Figure 4.4, we plot the ratio of the expected pointwise density for each model
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relative to the multinomial baseline model. Higher ratio values reflect better per-

formance predicting a child’s knower level given their age and culture. There are

two comparisons worth particular attention. First, we check the performance of our

simplest (6 parameter) number word learning model (CR-CP) against a standard

multinomial baseline model (56 parameters) with full access to cultural information.

This is illustrated in Figure 4.4 as the difference between the vertical baseline model

and the CR-CP model. Compared to the baseline model (elpd: -2786; SE: 26),

the universal (CR-CP) model has much greater predictive ability (elpd: -2738; SE:

33), suggesting children’s acquisition of exact number words is well explained by our

model. Next we evaluate how models with cultural specific rates or priors compare

to the universal (CR-CP) model. As can be seen in Figure 4.4, there is strong evi-

dence that culture has an influence on both the rate of ELIs and the inductive biases

learner’s bring to the task (VR-VP elpd:-2537; SE: 39).

Having validated the model’s predictive ability, we can further explore the pa-

rameters of the full model. In Figure 4.5, we plot the prior over hypotheses for

each culture as the odds of generating a knower level hypothesis relative to a non-

knower hypothesis. Consistent with the simplicity prior used by Piantadosi et al.

(2012), our inferred parameters suggest it is easier to generate a one-knower hypoth-

esis than a two-knower hypothesis, easier to generate a two-knower hypothesis than

a three-knower hypothesis and easier to generate a three-knower hypothesis than a

four-knower hypothesis. Interestingly, our estimates suggest that learners are about

equally as likely to be a four knower as a CP knower.

Turning to the rate of ELIs, Figure 4.6 plots the the posterior distribution of
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Figure 4.5: Inferred odds of generating a knower level hypothesis relative to a non-
knower hypothesis.
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Figure 4.6: Inferred rates of effective learning instances for each culture.
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rates for each culture. Surprisingly, the inferred parameters suggest that ELIs for

number word learning are fairly infrequent occurring between once every four months

to once ever other month. Perhaps less surprisingly, the WEIRD cultures pattern

together at the upper end of the range; whereas, the Tsimané have a lower rate of

ELIs. Future research is needed to understand how exactly culture influences the

rate. That being said, the order of magnitude of rates is very similar to the rates

of ELIs required for children to learn their earliest learned words (Mollica & Pianta-

dosi, 2017a), potentially suggesting universal cognitive constraints on children’s data

usage.

4.4 Discussion

There is a whole wide world of environments and cultural needs. Our data analysis

model provides us leverage to identify where culture might influence the learning

process. Here, we found a role for culture in both how people generate hypotheses

in the absence of data (i.e., priors) and how frequently people have ELIs. It’s also

worth noting that in spite of the cultural differences, we find support for the same

inductive learning mechanism operating across cultures.

Looking at our best estimates for the inferred priors, we found a universal or-

dinal pattern in-line with a simplicity bias; however, the differences in simplicity

varied across cultures suggesting that the same hypotheses might be more difficult

to generate in one culture than another. A strong test of our finding for cultural

differences in inductive bias would be to explicitly manipulate the probability of gen-
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erating hypotheses by giving people a battery of mathematical tasks to increase the

local utility of a particular underlying representation system (e.g., the approximate

number system vs the count system). If the tasks that cultures value influence fu-

ture learning, participants should carry a bias towards the previously useful system

to learning a new task. Additionally, modeling people’s behavior in a wide range of

algorithmic tasks may also reveal these different biases.

Returning to our best estimates for rates, we find rates on the same order of

magnitude. We cannot be sure that this order of magnitude is due to the model,

the environment or the learner; however, intuition and corpus measurements would

suggest that the WEIRD environments are similar; and the rates are on the same

order of magnitude as those in a model-free analysis (Mollica & Piantadosi, 2017a).

Therefore, while we acknowledge that there are complex interactions between envi-

ronmental input, and the learner, we suggest that learning might be more constrained

by the learner (e.g., attention, utility of task/data) than currently theorized. With-

out a clearer conceptualization of ELIs, we make fewer predictions for how to test

for cultural differences in ELI rates.

There are several limitations of the current work. First, while there are attested

cultural differences in the development of exact number word in the languages in our

study, these languages are a small sample of the linguistic and numerical systems

present throughout the world. Future research should examine how the learning

process differs across more diverse numerical systems. Second, our model frames

number word learning as inductively learning from the structures present in the

world. However, it’s highly unlikely that the data learners use is sampled randomly
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from the structure in the world as opposed to from an informed teacher. Given

number’s status as a cognitive artifact, learning numerical systems should be a fertile

domain for examining how utility structures and pedagogical contexts differ across

cultures and influence learning.

To conclude, even though our model comparison pointed toward culturally-specific

processes in exact number word learning, there are universal components to learn-

ing. The rate of data is on the same order of magnitude suggesting fundamentally

similar use of data and the priors all follow the same overall magnitude and relative

proportion. Additionally, the shape of the priors is in line with an assumed model

prior for simplicity suggesting that it’s a driving force in learning number concepts.

4.5 Methods

We fit the models using adaptive Hamiltonian Monte-Carlo methods (Hoffman &

Gelman, 2014; Betancourt, 2017) as implemented in Stan (Carpenter et al., 2017)

and corresponding R package (Stan Development Team, 2018). For each model, we

ran four chains for 2000 iterations steps discarding the first 1000 steps as warm-up.

Visual inspection and R-hat metrics suggest the chains converged for all models. For

model comparison, leave-one-out cross-validation with Pareto-smoothed importance

sampling was implemented by the loo package (Vehtari, Gabry, Yao, & Gelman,

2018) in R (R Core Team, 2018).
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4.A Appendix to Chapter 4

4.A.1 Mathematical Derivation of the model

The generative model in Figure 4.1a represents a joint probability distribution:

P (t, λ, n, θ, d, h, k) = P (k|h)P (h|D)
n∏

d=0

P (d|θ)P (θ)P (n|t, λ)P (λ)P (t). (A.1.1)

To derive model predictions for knower level k as a function of age t, we want an

analytical form for

P (k|t, λ, θ) =
∞∑
n

H∑
h

n∑
d

P (k|h)P (h)P (n|t, λ)
n∏

d=0

P (d|θ)P (d|h). (A.1.2)

Let’s start with definitions. The probability of being a k knower give a hypothesis

can be expressed as

P (k|h) = δkh, (A.1.3)

where δ is Kroenecker’s delta.

The probability of observing n ELIs given a rate of λ ELIs per month and an age

of t months is given by

P (n|t, λ) ∼ Poisson(λ · t). (A.1.4)

There are two generative processes for the data that we need to consider: the

probability of the world generating the data P (d|ϕ⃗) and the probability of the

learner’s hypothesis generating the data P (d|h). For convenience, we represent the

processes of generating data from the world as the probability of the data generated
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from the world being consistent with a knower level P (d|θk), which is a binomial

distribution. As a result, we rewrite the environmental distribution of data ϕ⃗

D ∼ Multinomial(ϕw, n) (A.1.5)

as

P (d|θk) =
n!

d!(n− d)!
θdkθ

1−d
k , (A.1.6)

where

θh =
∑
w∈h

ϕw. (A.1.7)

The probability of generating data given a hypothesis is given by Equation 4.2.

For convenience, we rewrite Equation 4.2 as a bernoulli distribution:

P (d|h) = wdl1−d, (A.1.8)

where l = (1−α)
10

and w = α + l .

Turning back to A.1.2, we first push in the summations:

P (k|t, λ, θ) =
∑
h

P (k|h)P (h)
∑
n

P (n|t, λ)
∑
d

∏
d

P (d|θ)P (d|h). (A.1.9)

Now we make use of the binomial theorem and the identity of the exponential

function to derive an analytical form for our marginalization over all possible amounts

of data and all possible combinations of data type at every amount. Focusing first

on the marginalization over all possible combinations of data, we can analytically
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define the sum as follows:

∑
d

n∏
d=0

P (d|θ)P (d|h) =
∑
d

n!

d!(n− d)!
(θw)d((1− θ)l)n−d

= ((1− θ)l)n
∑
d

n!

d!(n− d)!

(
θw

(1− θ)l

)d

= ((1− θ)l)n
(
1 +

θw

(1− θ)l

)n

via the binomial theorem: (1 + x)n =
n∑

k=0

n!

k!(n− k)!
xk

= ((1− θ)l + θw)n.

(A.1.10)

Next we turn to the marginalization over all possible data amounts n and com-

binations of data types at each amount:

∑
n

P (n|t, λ)
∑
d

∏
d

P (d|θ)P (d|h) =
∑
n

(λt)ne−λt

n!
((1− θ)l + θw)n

= e−λt
∑
n

(λt)n((1− θ)l + θw)n

n!

= e−λt
∑
n

(λt[(1− θ)l + θw])n

n!

= e−λt · eλt[(1−θ)l+θw] via the identity ez =
∞∑
k=0

zk

k!

= eλt{[(1−θ)l+θw]−1}.

(A.1.11)
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Rewriting Equation A.1.2 with our analytical solution for the marginalizations:

P (k|t, λ, θ) =
∑
h

γhδkhe
λt{[(1−θ)l+θw]−1} (A.1.12)

where P (h) = γh.

4.A.2 Converting raw Give-N data to Knower Level

To convert raw Give-N data to knower levels, we used the Bayesian data analysis

model developed by Lee and Sarnecka (2010, 2011). Briefly, the model assumes that

children have a base rate π at which they return a set of m objects regardless of

instructions. When a child hears a prompt q, they will update the probability of

returning a set of objects π′
m based on their knower level k as follows:

π′
m =



πm if q > k

vπm if q ≤ k < CP and m = q

1
v
πm if q ≤ k < CP and m ̸= q

vπm if k = CP and m = q

1
v
πm if k = CP and m ̸= q

(A.2.1)

where v is a free parameter reflecting the strength of this update. When faced with

a query beyond their knower level, a child should respond according to the base rate

(case one). When the query is within their subset range, they should up-weight the

probability of a correct response (case two) and down-weight the probability of an
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incorrect response (case three). Similarly, if a child is a CP knower, they should

up-weight the correct response (case four) and down-weight the incorrect responses

(case five). A child’s actual response is then a categorical draw from this updated

distribution.

Using this model, we infer each child’s knower level kN
i=0, the population level

strength of update v and the population level base rate π from the Give-N data.

Before we analyse the inferred parameters, we provide a posterior predictive checks

of the model in Figure 4.7. First, we can look to see how strongly the model captures

the knower level pattern in the literature. The updated probability of responding

with a set of objects πm is plotted for each knower level (x-facet) and culture (y-facet)

as shaded tiles. Darker shades reflect greater probability. Based on the shading,

the model successfully predicts the knower level pattern reported in the literature.

Now, we turn to how well the model assigns children to knower levels. The raw

data points are over-layed with the maximum-a-posteriori assignment of children to

knower levels. The size of the points reflects the number of trials. Consistent with

Lee and Sarnecka (2010, 2011), we find the model’s assignment of children to knower

levels matches the pattern reported in the literature.

Having established the model provides a good account of the data, we can turn

Evidence Strength 95% High Density Interval
English (N = 211) 29.13 24.03 - 35.44

Hungarian (N = 151) 30.57 25.12 - 41.87
Japanese (N = 48) 22.59 14.06 - 35.27
Russian (N = 59) 58.53 32.28 - 108.99

Tsimane (N = 593) 19.48 17.24 - 21.95

Table 4.2: Inferred evidence strength parameters



CHAPTER 4. UNIVERSAL AND CULTURAL SPECIFIC PROCESSES 147

Non One Two Three Four CP
E
n
g
lis
h

H
u
n
g
a
ri
a
n

J
a
p
a
n
e
s
e

R
u
s
s
ia
n

T
s
im
a
n
e

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1

2

3

4

5

6

7

8

9

10

11

Query

R
e
s
p
o
n
s
e

N 50 100 150 200 250

Figure 4.7: Posterior predictive check of knower level assignment. The shading
in each facet reflects the posterior predictive distribution for the updated query-
response matrix πm for every knower level (x-facet) and culture (y-facet). Darker
shades reflect greater probability. Points reflect the raw trial data under the MAP
assignment of children to knower levels, with size reflecting the number of trials.
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Figure 4.8: The inferred base rate response distribution π for children of different
cultures in the Give-N task.

to the parameters of the model. The knower level distributions for each culture can

be found in the main text Figure 4.3. Figure 4.8 shows the base rate parameter

for each culture. Lee and Sarnecka (2010)’s study with English speaking children

found that children preferred to respond with small numbers or with the maximum

number available. We see a similar pattern across cultures; however, we only see

children responding with the maximum number allowed for English and Japanese.

For English, the bumps at 10 and 15 correspond to different studies that had 10

and 15 total objects, respectively. Perhaps there are different pragmatics to the

task across cultures. With regard to the parameter for evidence strength, Lee and

Sarnecka (2010) estimate for English children was approximately normal with a mean

of 29.2 and standard deviation of 7.4, suggesting children’s updating changes the

probability of responses by a factor of 30. We find similar estimates for English

and Hungarian, slightly lower estimates for Japanese and Tsimane, and much higher

estimates for Russian (Table 4.2).
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Chapter 5

Humans store about 1.5 megabytes of in-
formation during language acquisition

One of the foundational debates about human language centers on an issue of scale:

is the amount of information about language that is learned substantial (empiricism)

or minimal (nativism)? Despite theoretical debates on the how much of language

is or can be learned, the general question of the amount of information that must

be learned has yet to be quantified. Here, we provide an estimate of the amount of

information learners must extract in the process of language acquisition. We provide

lower-bound, best guess, and upper-bound estimates of this information, using a “back

of the envelope” approach that is popular in physics. During the testing of the atomic

bomb, physicist Enrico Fermi famously estimated the strength of the bomb by drop-

ping scraps of paper as the blast passed. He noted that they were blown about 8 feet

by the explosion and, after quickly computing in his head, announced that the blast

was equivalent to about 10,000 tons of TNT (Schwartz, 2017). The true answer was

18,000 tons, meaning Fermi’s crude experiment and quick calculation got the right

answer to within a factor of two. Similar back-of-the-envelope Fermi-calculations are
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commonly used in physics as a sanity check on theories and computations.1 However,

such sanity checks are needed—although rarely applied—in fields that suffer from

under-constrained theories, like psychology.

We apply this approach of rough estimation in order to quantify a lower-bound

on the number of bits per day that language learners must extract and remember

from their environments. While a substantial literature has focused on the differences

between nativist and empiricist approaches, when they are translated into the domain

of information theory, nativism and empiricism may blur together. Specifically, hard

nativist constraints on sets of hypotheses may not necessarily provide much more

information than the correct set of biases over an unconstrained space. Since we

do not know much about which initial language learning biases children have, and

how they interact with cognitive constraints, theories about how the hypotheses are

constrained (or not) do not unambiguously determine the number of bits learners

must store.

So, instead of debating nativism versus empiricism, we take up the challenge of

quantifying how much information of language must be learned in order to inform

the underlying acquisition theories. To avoid dependence on a particular represen-

tation scheme, we focus on the possible outcomes of learning a language, i.e., we

compute the number of bits required to specify the target outcome out of a plausible

space of logically possible alternatives. To avoid dependence on a particular learning

algorithm, we study the problem abstractly without reference to how learning works,
1These computations are also used as a training exercise that allows surprising quantities to be

approximated. An example is to compute the thickness of a car tire that is worn off with each
rotation. Here’s a hint: you can use your knowledge of how many miles car tires last for and how
much thickness they lose over their lifetime.
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but rather based on how much a relatively unbiased (e.g. maximum entropy) learner

would have to store.

Our study is inspired by prior work which has aimed to characterize the capacity

of human memory. Early literature approached the question of memory capacity

from a neuroanatomical perspective. Upper bounds on memory capacity have been

estimated via the number of synapses in cortex (1013 bits) or the number of impulses

conducted in the brain across a lifetime (1020 bits) (Von Neumann, 1958). More

recently, bounds for information transfer in neural coding have been estimated using

information theoretic techniques (Borst & Theunissen, 1999; Bartol Jr et al., 2015).

Working from behavioral performance, Landauer (1986) used a variety of techniques

to estimate the number of bits of information humans must have in memory in order

to show a given level of task performance. In one example, he converted accuracy in

a recognition memory task to bits by imagining that each image was stored using a

random code. This technique has been used recently by Brady, Konkle, Alvarez, and

Oliva (2008) in a large-scale empirical study, which estimated that human memory

could encode 213.8 unique items. Even more recently, Ferrara, Furlong, Park, and

Landau (2017) estimated 4 and 6 year old children’s memory capacity to be 210.43

unique items. Strikingly, both of these estimates lie within Landauer’s estimated

range of 10-14 bits per item. Landauer also used a dictionary study to estimate

the number of words that Stanford students knew, and converted the estimates

for a phonetic code into bits, requiring about 30 − 50 bits per word (Landauer,

1986). All of his estimates converged on the same order of magnitude, suggesting

that the “functional capacity” for human memory is on the order of 109 bits. A
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detailed critique of Landauer can be found in Hunter (1988), with a response given

by Landauer (1988).

Our focus here is on estimating linguistic knowledge across multiple levels of

structure and function: phonemes, wordforms, lexical semantics, word frequency

and syntax. At each level, there is a large space of logically possible linguistic rep-

resentations (e.g., acoustic cue values, syntactic parses). The challenge for learners

is to discover and store which representations are used in their language. Tools in

information theory allow us to estimate the relevant quantities. First, we assume

that before learning, children begin with a certain amount of uncertainty over the

required representation, R, denoted H[R]. Shannon entropy quantifies the number

of bits that must be received on average to remove uncertainty about what R is the

true one (Shannon, 1948). After observing some data D, learners will have a new

amount of uncertainty (perhaps zero) over R, denoted H[R | D]. Note that here,

D is not a random variable, but rather a specific value of data in learning a given

language.

We can formalize the amount of information that D provides about R, here

denoted ∆H[R | D] as the difference between H[R] and H[R | D]:

∆H[R | D] = H[R]−H[R | D] = −
∑
r∈R

P (r) logP (r) +
∑
r∈R

P (r | D) logP (r | D).

(5.1)

This quantity, i.e. the reduction in entropy, gives the amount of information that D

(e.g. data from learning) provides about a representation R.2 Thus, in order to esti-
2The average of ∆H[R | D] over D is the mutual information between R and D (Cover &

Thomas, 2012).
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Table 5.1: Summary of estimated bounds across levels of linguistic analysis
Section Domain Lower bound Best Guess Upper bound
5.1.1 Phonemes 375 750 1500
5.1.2 Phonemic Wordforms 200, 000 400, 000 640, 000
5.1.3 Lexical Semantics 553, 809 12, 000, 000 40, 000, 000
5.1.4 Word Frequency 40, 000 80, 000 120, 000
5.1.5 Syntax 134 697 1394

Total (bits) 794, 318 12, 481, 447 40, 762, 894
Total per day (bits)4 121 1, 900 6204

mate the amount of information learners must have acquired, it suffices to estimate

their uncertainty before learning, H[R], and subtract from it their uncertainty after

learning H[R | D]. The resulting value will tell us the number of bits of information

that the learning data D has provided.3

5.1 Results

We will build up our estimates separately for each linguistic domain. The results of

each section are summarized in Table 5.1. Table 5.2 summarizes the key assumptions

behind each of our estimations.

5.1.1 Information about Phonemes

Our phonemic knowledge enables us to perceive discrete linguistically-relevant sounds,

or phonemes, from rich high-dimensional but noisy speech signals. Before a child
3In the case of continuous distributions, Equation 5.1 has continuous analogs where the sums

turn into integrals.
4For this value, we assume language is learned in 18 years of 365 days.
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knows the sounds of their language, they have uncertainty over the acoustic features

of speech sounds. After learning their language, children have much less uncertainty

over the acoustic features of speech sounds as they now have several acoustic cues to

help them identify phonemes. Following the above logic, the decrease in the amount

of uncertainty children have about where their speech sounds lie in acoustic space is

the amount of information they must now store about phoneme cues.

Identifying linguistically relevant acoustic cues has proven challenging for scien-

tists, as there is no obvious invariance, or uniquely identifying component, in speech

sounds. For our estimation, we analyze the information stored for three well studied

acoustic cues: voice onset time (VOT) in ms—a cue to voiced-voiceless distinctions

(e.g., the difference between /p/ and /b/), central frication frequency in barks—a cue

to the place of articulation for fricatives (e.g., the difference between /f/ and /s/),

and the first two formant frequencies of vowels in mels—a cue to vowel identity. We

assume that initially learners have maximum uncertainty along each cue R, following

uniform distributions bounded by the limits of perception. In this case, each r ∈ R

has an equal probability of P (r) = 1/(B − A), giving

H[R] = −
∫

P (r) logP (r) dr = log(B − A), (5.2)

where B and A are respectively the upper and lower bounds of perception. For

VOT, we assume the range is −200 to 200 ms. For frequencies, we assume bounds

on human hearing of 20 to 20, 000 Hz, which translate to 0.2 − 24.6 in barks and

32 − 3817 in mels. As a measure of the uncertainty over the cue dimension after

learning, we will assume that speaker’s knowledge is captured by a normal prior
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distribution, giving H[R | D] as

H[R | D] =

∫
N(x | µ, σ) logN(x | µ, σ) dx =

1

2
log(2πeσ2) (5.3)

where N is a normal probability density function,5 and µ and σ are the participants’

inferred mean and standard deviation. To find σ for real humans, we use the val-

ues inferred by (Table 7; Kronrod, Coppess, & Feldman, 2016) to account for the

perceptual magnet effect.6

We find that language users store 3 bits of information for voiceless VOT, 5 bits for

voiced VOT, 3 bits for central frication frequency and 15 bits for formant frequencies.

As these acoustic cues are only a subset of the cues required to identify consonant

phonemes, we assume that consonants require three cues; each cue requiring 5 bits

of information. For vowels, we do not adjust the 15 bits of information conveyed by

formant frequencies. As a best guess, again paying attention to primarily the order

of magnitude, we assume there are 50 phonemes each requiring 15 bits, totaling 750

bits of information. For lower and upper estimates, we introduce a factor of two

error [375-1500 bits].

5.1.2 Information about Wordforms

When dealing with wordforms, the first challenge is to define a “word,” a term which

could be used to refer to lemmas, phonological forms, families of words, senses, etc.
5Using a normal distribution with the domain truncated to our perceptual bounds does not

change our estimate.
6For vowels, we extend these distributions to their multidimensional counterparts as formant

space is (at least) two dimensional.
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Entire dissertations could be (and have been) written on these distinctions. These

difficulties are in part why the Fermi-approach is so useful: we don’t need to make

strong theoretical commitments in order to study the problem if we focus on rough

estimation of orders of magnitude. Estimates of the number of words children acquire

range on the order of 20, 000-80, 000 total wordforms (Anglin, Miller, & Wakefield,

1993). However, when words are grouped into families (e.g. “dog” and “dogs” are

not counted separately) the number known by a typical college student is more

in the range of 12, 000 − 17, 000 (Zechmeister, Chronis, Cull, D’Anna, & Healy,

1995; D’Anna, Zechmeister, & Hall, 1991)—although see Brysbaert et al. (2016)

for an estimate over twice that size. Lexical knowledge extends beyond words too.

Jackendoff (1997) estimates that the average adults understands 25, 000 idioms, items

out of the view of most vocabulary studies. Our estimates of capacity could of course

be based on upper-bounds on what people could learn, which, to our knowledge, have

not been found. Looking generally at these varied numbers, we’ll use an estimate of

40, 000 as the number of essentially unique words/idioms in a typical lexicon.

The most basic thing each learner must acquire about a word is its phonemic

wordform, meaning the sequence of phonemes that make up its phonetic realization.

If we assume that word forms are essentially memorized, then the entropy H[R | D]

is zero after learning—e.g. for all or almost all words, learners have no uncertainty

of the form of the word once it has been learned. The challenge then is to estimate

what H[R] is: before learning anything, what uncertainty should learners have? To

answer this, we can note that H[R] in Equation 5.1 can be viewed as an average of

the negative log probability of a wordform, or − logP (R). Here, we use a language
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model to estimate the average negative log probability of the letter sequences that

make up words and view this as an estimate of the amount of entropy that has

been removed for each word. In other words, the average surprisal of a word under a

language model provides one way to estimate the amount of uncertainty that learners

who know a given word must have removed.78

To estimate these surprisals, we used the CELEX database (Baayen, Piepenbrock,

& Gulikers, 1995), we computed the surprisal of each word under 1-phone, 2-phone,

3-phone and 4-phone models (see Manning & Schütze, 1999) trained on the lexicon.

This analysis revealed that 43 bits per word on average are required under the 1-

phone, 33 bits per word under the 2-phone, 24 under the 3-phone and 16 under

the 4-phone model. Noting the sharply decreasing trend, we will assume a lower

bound of about 5 bits per word to store the phonetic sequence, a “best guess” of 10

bits per word and an upper bound of 16 as in the 4-phone.9 When our best guess

is multiplied by the size of the lexicon (40, 000 words), that gives an estimate of

400, 000 [200, 000− 640, 000] bits of lexical knowledge about the phonetic sequences

in words.
7In this view, we neglect the complexity of the language model, which should be a much smaller

order of magnitude than the number of bits required for the entire lexicon.
8Analogously, we can view the surprisal as the number of bits that must be remembered or

encoded for a particular outcome—e.g. to learn a specific wordform.
9As the average word length in this database is ∼ 7.5 phonemes, this gives slightly over one bit

per phoneme.
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5.1.3 Information about Lexical Semantics

The information contained in lexical semantics is difficult to evaluate because there

are no accepted theories of semantic content, or conceptual content more generally

(Laurence & Margolis, 1999). However, following Fermi, we can make very simplified

assumptions and try to estimate the general magnitude of semantic content. One

way to do this is to imagine that the set of word meanings are distributions in an

N -dimensional semantic space. If we assume that the entire space is a Gaussian with

standard deviation R and the standard deviation of an individual word meaning is r,

then we can compute the information contained in a word meaning as the difference

in uncertainty between a N -dimensional Gaussian with radius R as compared to one

with radius r. The general logic is shown in Figure 5.1. The “space” shown here rep-

resents the space of semantic meanings, and words are viewed as small distributions

in this space covering the set of things in the extension of the word’s meaning. Thus,

when a leaner acquires a word like accordion, they know that the word refers to some

relatively small subset (of size r) of possible objects, but they may not be certain

on the details (Does the extension cover harmoniums? Concertinas? Bayans?). The

reduction in entropy from a total semantic space of size R—no idea what a word

means—to one of size r is what we use to approximate the amount of information

that has been learned.

Equation 5.3 above gives the change in entropy for a one-dimensional Gaussian.

However, the dimensionality of semantic space is considerably larger. In the case of

an N -dimensional Gaussian, with independent dimensions and constant, or homoge-
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Figure 5.1: The shaded spheres represent uncertainty in semantic space centered
around a word (in green). Left: The uncertainty is given with respect to the word’s
farthest connection in semantic space (in yellow), representing R. Right: The un-
certainty is given with respect to the N th nearest neighbor of the word (in red),
representing r. The reduction in uncertainty from R to r reflects the amount of
semantic information conveyed by the green word.

neous standard deviation σ in each dimension, the entropy is given by:

H[R] =
N

2
(1 + log 2π + log σ). (5.4)

This means that if we go from an R standard deviation Gaussian to an r standard

deviation one, the amount of information we have learned is the difference between

these entropies,

∆H[R | D] =
N

2
(1 + log 2π + logR)− N

2
(1 + log 2π + log r) =

N

2
log

R

r
(5.5)

We estimate R and r in several different ways by looking at WordNet (Fellbaum,

1998) to determine the closeness of each word to its neighbors in semantic space. In

particular, we take r to be a characteristic distance to nearby neighbors (e.g. the

closest neighbors), and R to be a characteristic distance to far away ones (e.g. the
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Figure 5.2: Histograms showing the number of bits-per-dimension (1
2
log R

r
) for var-

ious estimates of R and r. These robustly show that 0.5 − 2.0 bits are required to
capture semantic distances.

max distance). Note, that this assumes that the size of a Gaussian for a word is about

the same size as its distance to a neighbor, and in reality this may under-estimate

the information a word meaning contains because words could be much more precise

than their closest semantic neighbor.

Figure 5.2 shows 1
2
log R

r
for several estimates of R and r for 10, 000 random nouns

in WordNet. The likely values fall within the range of 0.5 − 2.0 bits. Because we

are plotting 1
2
log R

r
and not N

2
log R

r
, these values may be interpreted as the number

of bits per dimension that lexical semantics requires. For instance, if semantic space
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was one-dimensional then it would require 0.5− 2.0 bits per word; if semantic space

were 100-dimensional, lexical semantics would require 50 − 200 bits per word. The

nearness of these values to 1 means that even continuous semantic dimensions can be

viewed as approximately binary in terms of the amount of information they provide

about meaning.

The dimensionality of semantic space has been studied by Landauer and Dumais

(1997) and Mandera, Keuleers, and Brysbaert (2017), with numbers ranging from

100−500 dimensions. Our best guess will use 1 bit per dimension and 300 dimensions

following Landauer and Dumais (1997) for 12, 000, 000 bits. Our upper bound uses

2 bits-per-dimension and 500 dimensions for a total of 40, 000, 000 bits.

For our lower-bound in this domain, we may pursue a completely alternative

technique, which, surprisingly, gives a similar order of magnitude as our best guess.

If there are 40, 000 lexical items that must be learned, we can assume that they

correspond to 40, 000 distinct concepts (a la principle of contrast (E. V. Clark, 1987)).

In the “most nativist” case, favored by Fodor (Fodor, 1975), we could assume that

there are a corresponding 40, 000 meanings for these words that learners innately

have. In this case, the problem of learning is figuring out which of the 40000! pairings

of words and concepts is the correct one. It will take log2(40000!) ≈ 553, 809 bits of

information to specify which of these is correct. We will use this as our lower-bound.

While this seems like an unmanageable task for the child, it’s useful to imagine

how much information is conveyed by a single pedagogical learning instance. Our

estimate is derived by a combinatorial argument: to choose the first word’s meaning,

there are N choices, the second there N − 1, and so on. The total number of choices
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is therefore N...(N − 1)...(N − 2)...(N − 40000) = N !/(N − 40000)!. So if initially

N = 400000 (553, 809 bits), there will be N = 39999 (553, 794 bits) after one correct

mapping is learned, meaning that a single pedagogical instance rules out 39, 999

possible pairings or, equivalently conveys 15.29 bits.

5.1.4 Information about Word Frequency

Word frequencies are commonly studied in psychology as factors influencing lan-

guage processing and acquisition (e.g., Forster & Chambers, 1973; Balota, Cortese,

Sergent-Marshall, Spieler, & Yap, 2004; Plaut, McClelland, Seidenberg, & Patterson,

1996; Zorzi, Houghton, & Butterworth, 1998; Coltheart, Rastle, Perry, Langdon, &

Ziegler, 2001; Murray & Forster, 2004) as well as for their peculiar Zipfian distribu-

tion (Piantadosi, 2014b). However, relatively little work has examined the fidelity

of people’s representation of word frequency, which is what is required in order to

estimate how much people know about them. In one extreme, language users might

store perhaps only a single bit about word frequency, essentially allowing them to

categorize high vs. low frequency words along a median split. On the other extreme,

language users may store information about word frequency with higher fidelity—

for instance, 10 bits would allow them to distinguish 210 distinct levels of word

frequency as a kind of psychological floating point number. Or, perhaps language

learners store a full ranking of all 40, 000 words in terms of frequency, requiring

log(40000!) = 553, 809 bits of information.

In an experimental study, we asked participants from Mechanical Turk (N = 251)

to make a two-alternative forced choice to decide which of two words had higher
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Figure 5.3: Accuracy in frequency discrimination accuracy as a function of log word
frequency bin faceted by log reference word frequency bin. Vertical red lines denote
within bin comparison. Line ranges reflect 95% bootstrapped confidence intervals.

frequency10. Words were sampled from the lexical database SUBTLEX (Brysbaert

& New, 2009) in 20 bins of varying log frequency. We removed words below the

bottom 30’th percentile (frequency count of 1) and words above the upper 99’th

percentile in word frequency in order to study the intermediate-frequency majority

of the lexicon. Each participant completed 190 trials.

Participants’ accuracy in answering is shown in Figure 5.3. The i’th subplot

shows participants’ accuracy (y-axis) in distinguishing the i’th bin from each other

j’th bin, with the red line corresponding to i = j. This shows, for instance, that
10Participants were instructed that we were interested in their first impression and that there

was no need to look up word frequencies.
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people are poor at distinguishing very close i and j (near the red line), as should be

expected.

Participants’ overall accuracy in this task was 76.6%. Neglecting the relatively

small difference in accuracy (and thus fidelity) with a words’ absolute frequency, this

accuracy can be modeled by imagining that participants store M levels of word fre-

quencies. Their error rate on this task will then be given by the probability that two

words fall into the same bin, or 1/M . Setting 1/M = 1−0.766 gives M ≈ 4, meaning

that participants appear to track approximately four categories of frequencies (e.g.

high, medium-high, medium-low, low). This trend can also be observed in Figure

5.3, where the flat bottom of the trough in each plot is approximately 5 bins wide,

meaning that each bin cannot be well distinguished from its 5 nearest neighbors,

giving a total effective number of bins for participants as 20/5 = 4.

If M = 4, then participants would only need to learn log 4 = 2 bits of information

about a word’s frequency, as a best guess. This would yield a total of 2 · 40, 000 =

80, 000 bits total across the entire lexicon. We construct our lower- and upper-

bounds by introducing a factor of two error on the computation (e.g. per word lower

bound is 1 bit and upper is 3 bits). It is important to note that by assuming objective

frequency rankings, our estimate is conservative. If we could analyze participants’

responses with regard to their subjective frequency rankings, we would expect to see

greater accuracy reflecting higher resolution representations of frequency.
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5.1.5 Information about Syntax

Syntax has traditionally been the battleground for debates about how much infor-

mation is built in versus learned. Indeed, syntactic theories span the gamut from

those that formalize a few dozen binary parameters (K. Wexler & Manzini, 1987;

Kohl, 1999) to ones that consider alternative spaces of infinite models (e.g., Perfors

et al., 2011; Chater & Vitányi, 2007) or data-driven discovery from the set of all

parse trees (Bod, Scha, Sima’an, et al., 2003). In the face of massively incompat-

ible and experimentally under-determined syntactic theories, we aim here to study

the question in a way that is as independent as possible from the specific syntactic

formalism.

We do this by noting that every ordinary English speaker’s knowledge of syntax

provides enough information to correctly parse every sentence of English. In many

cases, the sentences of English will share syntactic structure. However, we can imag-

ine a set s1, s2, . . . , sn of sentences which share as little syntactic structure as possible

between each si and sj. For instance,

Bill [met John]. [Jill’s sister] cried. (5.6)

both have three words but have largely non-overlapping syntactic structures due to

the use of a transitive verb in the first and a possessive and intransitive verb in

the second. We will call theses “essentially independent” sentences when they share

almost no syntactic structure. In this case, the bits specifying these parses can be

added together to estimate the total information learners know. If the sentences
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were not essentially independent in terms of syntactic structure, information from

one sentence would tell us how to parse information from another, and so adding

together the information for each would be an over-estimate of learners’ knowledge.

We assume that learners who do not know anything about a parse of a sentence si

start with a maximum entropy distribution over each parse, assigning each an equal

probability of one over the number of logically possible parses of si, so that

H[R] = −
∑
r∈R

1

#parses
log

1

#parses
= log(#parses). (5.7)

We assume the knowledge of an adult leaves zero uncertainty in general, yielding

H[R | D] = 0 so that

∆H[R | D] = H[R]−H[R | D] = log(#parses) (5.8)

for a single sentence si. In general, the number of logically possible parses can be

computed as the number of binary trees over si, which is determined only by the

length of si. The (l − 1)’th Catalan number gives the number of possible binary

parses for a sentence of length l. Then, the number of bits required to specify which

of these parses is correct is given by logCl−1. The Catalan numbers are defined by

Cn =
1

n+ 1

(
2n

n

)
. (5.9)

As an example, to determine each of (5.6), knowledge of syntax would have to specify

logC2 = 1 bit, essentially specifying whether the structure is ((◦ ◦) ◦) or (◦ (◦ ◦)).
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But Cn grows exponentially—for instance, C10 = 16796, requiring 14 bits to specify

which parse is correct for an 11-word sentence.

Looking at a collection of sentences, if si has length l(si), then the total amount

of information provided by syntax will be given by

n∑
i=1

logC(l(si)−1). (5.10)

Again, Equation 5.10 assumes that there is no syntactic structure shared between the

si—otherwise Equation 5.10 over-estimates the information by failing to take into

account the fact that some bits of information about syntax will inform the parses of

distinct sentences. Our upper and lower bounds will take into account uncertainty

about the number of distinct sentences si that can be found.

To estimate the number of such sentences, we use the textbook linguistic ex-

amples studied by Sprouse and Almeida (2012). They present 111 sentences that

are meant to span the range of interesting linguistic phenomena and were presented

independently in Adger (2003). Our best estimate is therefore Equation 5.10 taking

si to be the lengths of these sentences. We take the lower-bound to be Equation

5.10 where l(si) is half the sentence length of si, meaning that we assume that only

half of the words in the sentence participate in a structure that is independent from

other sentences. For an upper bound, we consider the possibility that the sentences

in Sprouse and Almeida (2012) may not cover the majority of syntactic structures,

particularly when compared to more exhaustive grammars like Huddleston, Pullum,

et al. (2002). The upper bound is constructed by imagining that linguists could per-

haps construct two times as many sentences with unique structures, meaning that we
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should double our best guess estimate. Notably, these tactics to bound the estimate

do not qualitatively change its size: human language requires very little information

about syntax, 697 [134− 1394] bits. In either case, the number is much smaller than

most other domains.

5.2 Discussion

Summing across our estimates for the amount of information language users store

about phonemes, wordforms, lexical semantics, word frequency and syntax, our best

guess and upper bound are on the order of 10 million bits of information, the same

order as Landauer (1986)’s estimate for language knowledge. It may seem surpris-

ing but, in terms of digital media storage, our knowledge of language almost fits

compactly on a floppy disk. The best-guess estimate implies that learners must be

remembering 1000-2000 bits per day about their native language, which is a remark-

able feat of cognition. Our lower bound is around a million bits, which implies that

learners would remember around 120 bits each day from birth to 18 years. To put

our lower estimate in perspective, each day for 18 years a child must wake up and re-

member, perfectly and for the rest of their life, an amount of information equivalent

to the information in this sequence,

0110100001101001011001000110010001100101011011100110000101100011

01100011011011110111001001100100011010010110111101101110
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Naturally, the information will be encoded in a different format—presumably one

which is more amenable to the working of human memory. But in our view, both

the lower and best-guess bounds are explainable only under the assumption that

language is grounded in remarkably sophisticated mechanisms for learning, memory,

and inference.

There are several limitations to our methods, which is part of the reason we focus

on orders of magnitude rather than precise estimates. First, our estimates are rough

and require simplifying assumptions (listed in Table 5.2). Second, there are several

domains of linguistic knowledge whose information content we do not estimate here

including word predictability, pragmatic knowledge, knowledge of discourse relations,

prosodic knowledge, models of individual speakers and accents, among others. Many

of these domains are difficult because the spaces of underlying representations are

not sufficiently well formalized to compute information gains (e.g. in pragmatics or

discourse relations). In other areas like people’s knowledge of probable sequences of

words, the information required is difficult to estimate because the same content can

be shared between constructions or domains of knowledge (e.g. the knowledge that

“Mary walks” and “John walks” are high probability may not be independent from

each other, or from knowledge about the lexical semantics of the verb). We leave the

estimation of the amount of information language users store about these domains

of language to further research.

Importantly, our estimates vary on orders of magnitude across levels of repre-

sentation. These differences could suggest fundamental differences in the learning

mechanism for specific language learning problems. As these analyses show, the
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majority of information humans store about language is linked to words, specifi-

cally lexical semantics, as opposed to other systems of language knowledge, such

as phonemes and syntax. In fact, the estimate for syntax is of a similar order of

magnitude proposed by some nativist accounts, in that the number of bits required

for syntax is in the hundreds, not tens of thousands or millions. To illustrate, if

syntax learning is principally completed in the first 5 years, children would have to

learn a single bit about syntax every 2-3 days on average. Despite this, the possible

outcomes for learners in our best guess for syntax consists of 2697 ≈ 10210 different

systems. In other words, learners still would need the ability to navigate an immense

space of possibilities, far greater than the number of atoms in the universe (∼ 1080).

In the other areas of language, even more enormous hypothesis spaces are faced as

well, pointing to the existence of powerful inferential mechanisms.

Turning back to nativism and empiricism, it is unfortunate that the majority of

the learnability debates have centered on syntactic development, which requires far

less information in total than even just a few word meanings. Despite the remark-

able mechanisms that must be deployed to learn hundreds of thousands or millions

of bits about lexical semantics, there are no viable accounts of lexical semantics rep-

resentation and learning, either from empiricists or nativists—despite some claims

by Fodor (1975). Our results suggest that if any language-specific knowledge is in-

nate, it is most likely for helping tackle the immense challenge of learning lexical

semantics, rather than other domains with learnability problems that require orders

of magnitude less information.
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Table 5.2: The assumptions we make in our estimates.

Section Domain Assumptions
5.1.1 Phonemes 1. The language system must contain information about

acoustic cues to phoneme identity.
2. The maximum entropy over the frequency dimension can
be represented as a uniform distribution over audible fre-
quency ranges.
3. The maximum entropy over the VOT dimension can be
represented as a uniform distribution ranging from −200 to
200 ms.
4. The variance in language users’ representations of acous-
tic cues for phonemes can be well approximated by normal
distributions following (Kronrod et al., 2016).

5.1.2 Phonemic Wordforms 1. The language system favors compression of statistical co-
occurrences.
3. The cost of specifying a language model over phonemes
is negligible.
4. Adult language users have a lexicon of 40, 000 lexical en-
tries.
5. The sample of words we used to induce our estimate is
an adequate approximation to the adult lexicon.

5.1.3 Lexical Semantics 1. Semantic space can be represented as a multivariate nor-
mal distribution with independent dimensions.
2. The maximum entropy over the space can be approxi-
mated by a normal distribution whose standard deviation
is the maximum distance between words.
3. What learners come to know about the semantics of words
narrows the distribution over semantic space based on dis-
tance to the nearest semantic neighbor.
4. Adult language users have a lexicon of 40, 000 lexical en-
tries.
5. Our sample of words is a decent approximation to the
distances of the average word.

5.1.4 Word Frequency 1. Errors in word frequency discrimination are a result of
insufficient representational resolution.
2. Subjective frequency rankings are well approximated by
objective frequency rankings (via corpus statistics).
3. Adult language users have a lexicon of 40, 000 lexical en-
tries.
4. The sample of words we used in our experiment are rep-
resentative of the words in the adult lexicon.

5.1.5 Syntax 1. The language system must contain information to
uniquely identify one binary parse tree from all possible
binary parse trees.
2. The maximum entropy over syntactic parses is given by
the number of binary parse trees.
3. Sentences from (Sprouse & Almeida, 2012) are a good
approximation/coverage of the essentially independent syn-
tactic components of English grammar.
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Chapter 6

Discussion

Children’s early word use has the potential to inform our understanding of lan-

guage acquisition and conceptual development. Nonetheless, early word use data

remains significantly under-utilized in research endeavors for at least two important

reasons. The first is that measuring rapid acquisition is difficult. Even weekly visits

to the lab may miss milestones in the life of a word. The second is that there are

multiple accounts of word learning that have the potential to predict the observed

data and can only be adjudicated by addressing the questions of how the data are

used, the degree to which maturational constraints affect learning, the nature of ab-

straction and generalization from data, the inductive biases of the learner and the

environmental constraints on learning. We argued that this requires a first-principles

computational approach, which involves specifying each component of learning and

observing how these components interact to explain and predict behavior, to iden-

tify boundary conditions and efficiency trade-offs and to determine fruitful research

directions. We introduce such an approach and apply it in two protracted develop-

mental domains: kinship, which shows similar patterns as children’s earliest concrete
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nouns (Haviland & Clark, 1974; Keil, 1989; Benson & Anglin, 1987; Greenfield &

Childs, 1977; Price-Williams et al., 1977), and number, where it is generally agreed

that conceptual development constrains adult-like lexical acquisition (Carey, 2009;

Wynn, 1990, 1992).

The goal of this thesis was to develop the hypothesis that the systematic patterns

of children’s word use over the course of development are the natural consequence of

a sophisticated inductive learning mechanism operating with insufficient data—i.e.,

rational construction (Xu, 2007, 2016, in press). The goal was accomplished by i)

demonstrating that this learning mechanism matches common patterns of early word

use (Chapter 2), ii) developing a linking hypothesis to make model predictions as a

function of time instead of data (Chapter 3), iii) evaluating an implementation of the

learning mechanism against a large, empirical dataset (Chapter 4) and iv) further

justifying the sophistication of the learning mechanism with information-theoretic

estimates of the size of the learning problem (Chapter 5).

In Chapter 2, we applied our model framework to the task of children acquiring

kinship terms. In addition to demonstrating that our model has the capacity to learn

any kinship terms system with cross-cultural simulations, we illustrate that under-

extension (E. V. Clark, 1973; Brown, 1973), over-extension (Rescorla, 1980; Anglin

et al., 1993), the characteristic-to-defining shift (Landau, 1982; Keil, 1989; Keil &

Batterman, 1984) and the order of acquisition (Haviland & Clark, 1974; Benson

& Anglin, 1987) are all explained by our model. In our model, under-extension

is explained by the local data distribution of kinship terms favoring unique, initial

word-referent mappings. Over-extension is the consequence of balancing abstraction
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and the complexity of the abstracted function. The characteristic-to-defining shift is

the natural consequence of over-extension in environments where characteristic over-

extensions capture most of the possible data but cannot completely and exclusively

capture all the possible data. The order of acquisition of kinship terms can be

explained either by the environmental availability of data (as suggested by Benson &

Anglin, 1987) or the construction of inter-related systems, but not through a natural

bias for simplicity alone (as suggested by Haviland & Clark, 1974).

In Chapter 3, we undertook the challenge of relating the amount of data utilized

by a learner (e.g., as specified by a model) to empirical measurements of children’s

age. In the process, we tackled a longstanding question in developmental science:

Is the acquisition of the lexicon primarily delayed by maturation (Markman, 1990;

Borer & Wexler, 1987) or driven by learning (Hoff, 2003; J. C. Goodman, Dale, & Li,

2008; Huttenlocher et al., 1991; Shneidman et al., 2013; Weisleder & Fernald, 2013;

Hidaka, 2013)? Across 14 different languages in Wordbank (Frank et al., 2015), we

determined that early lexical acquisition is primarily driven by data. Further, our

model inferred the profile of children’s data use: children utilize on the order of

10 effective learning instances when acquiring an early word, not a single instance

(e.g., Carey & Bartlett, 1978) nor on the order of hundreds or thousands of instances

(e.g., Siskind, 1996; Yu & Ballard, 2007; Yu & Smith, 2007); the instances that

children made use of occurred relatively infrequently—once every other month; and

children start paying attention to data for word learning relatively early—around two

months old for comprehension. Further, the model evaluations in Chapter 3 are a

significant methodological contribution, providing a broadly applicable, generative,
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linking hypothesis between data amounts and time and a model-free baseline for

learning. Future work should utilize these techniques to assess the temporal viability

of learning mechanism under different models of the environment.

In Chapter 4, we utilized the waiting time models constructed in Chapter 3 to

evaluate an exact number word learning implementation of the model framework

sketched in Chapter 2 (Piantadosi et al., 2012). We demonstrate that our first-

principles learning model predicts the data better than the standard off-the-shelf

multinomial regression analysis model. Additionally, we utilize our model as a de-

scriptive Bayesian data analysis (Tauber et al., 2015) to learn about learning. Specif-

ically, how does culture influence the timing of exact number word learning? Culture

has the potential to influence learning through the availability of effective learning

instances and through the inductive biases children have learned for approaching

new tasks. We demonstrate that the cross-cultural differences in timing are better

explained by differences in both the rate of effective learning instances and the biases

guiding children’s hypothesis generation.

Finally, in Chapter 5, we provide convergent evidence for the complexity of our

rational constructivist model framework from an information-theoretic description

of the memory requirements for language. Regardless of how a learner acquires lin-

guistic representations, they must store enough information about their language to

distinguish representations in their language from representations not in their lan-

guage. Chapter 5 estimated this amount of information to be surprisingly small

(about 1.5 MB) compared to the size of current artificial language models. Impor-

tantly, our conservative estimate allocates 69% of the stored linguistic information
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to lexical semantics (96% in our best guess estimate). In light of these estimates,

we argue that if the acquisition of any linguistic representation required a complex

learning mechanisms, the scale of the problem suggests lexical acquisition should be

a prime candidate.

6.1 The human learning machine

The ultimate task of cognitive science is to identify the representations and processes

that support our rich mental lives. The biggest challenge in uncovering the mental

models that support everyday cognition is not comparing models, but generating the

models to compare. Model selection techniques require specifying the space of pos-

sible models and the evaluation metrics for these models. In practice, we never have

the space of all possible models for a single task. Further, current techniques have

little applicability when theories are non-identifiable—i.e., when they make exactly

the same empirical predictions. Without formalization of the problem, it is often

unclear when and for what measures theories are non-identifiable. Therefore, the ex-

ploration of the space of possibilities is just as important and valuable a contribution

as empirical work or model comparisons focused on falsification.

A major contribution of this thesis is illustrating the power of first-principles

computational models as explanatory vehicles. A first principles account of a behav-

ior begins with established1 postulates and describes the consequences for behavior.

When the problem is formalized, then in addition to making clear predictions, and
1Of course, first principle accounts will make assumptions, but they should test the robustness

of their assumptions.
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evaluation metrics for a particular task, constraints and predictions about alternative

evaluation metrics and measures are often made explicit. A thorough exploration

of a cognitive model involves identifying the first-principles behind the model, the

evaluation metrics for the model, the linking hypothesis between models and empir-

ical measures, and the conditions under which the model is tractable. Consider the

human learning machine.

Proposition 1 Every model of learning requires the specification of a space of pos-

sible representations and a rule for updating representations based on observing data.

The models in Chapters 2 and 4 build a representational space of computer programs.

This space is motivated by the first-principles that learners possess rich compositional

machinery and a set of “core knowledge” primitive computations (Carey, 2009). Our

update rule is Bayes rule: consisting of both a prior inductive bias over hypotheses

and a likelihood function. Our prior is grounded by the observation that people

learn simpler rules faster than complex ones (J. Feldman, 2000). Our likelihood

is motivated by sampling assumptions (Tenenbaum, 1999). It’s important to note

that any representation space and data update rule are implicit statements about

inductive biases for how a model should generalize (Mitchell, 1980). Chapter 2

demonstrated how our choices result in the behavioral patterns that we observe in

children for kinship and Piantadosi et al. (2012) does so for number.

Proposition 2 Every model of learning will need data-analysis assumptions or a

linking hypothesis (Tanenhaus, 2004; Teller, 1984).
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Data analysis assumptions arise out of epistemic concerns—i.e., concerns about the

adequacy of measures. On the other hand, linking hypotheses are motivated by first-

principles. The uncertainty given by a linking hypothesis is aleatoric in nature—i.e.,

reflecting the true unknowable uncertainty of the world2. Both data analysis assump-

tions and linking hypotheses are essential for scientific progress but acknowledging

which are being used and allocating blame accordingly when models do not fit data

is essential for meaningful progress moving forward. In Chapter 3, we develop the

linking hypothesis between data amounts in models to empirical times of acquisition.

We show that compared to logistic regression—the standard data analysis assump-

tion for this data—waiting time models provide the best explanation for the mean

and the variance of the observed data.

Proposition 3 If humans learn with the intent of successfully achieve goals in the

world, they needs to model the environment/context (Conant & Ross Ashby, 1970;

Scholten, 2010).

The importance of the environment/context has not been lost on cognitive science

(e.g., Anderson & Schooler, 1991; H. H. Clark, 1992, 1996). Modeling a cognitive

agent requires both describing their environment and delineating their conceptu-

alization of the environment/context, which need not be accurate. In addition to

efficiently generating novel predictions across contexts, an analysis of the environ-

ments in which a first-principle model must operate has the potential to alleviate the

computational intractability of working with first-principles cognitive models directly
2This is not to say there cannot be a completely deterministic linking hypothesis or that we

should not be concerned with measurement error!
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(Van Rooij, 2008; Van Rooij & Wareham, 2008). In Chapter 2, our explicit models

of the environment allowed us to demonstrate that the order of acquisition effects in

kinship are only predicted under certain environments, but not by the learner inter-

nalizing the data-generating process of the environment. In the number domain, the

differences in timing across cultures could not be reduced to differences in the input

distribution because ostensibly there are none (Dehaene & Mehler, 1992). Similarly,

without our measurement of informants’ kinship learning contexts in Chapter 2, we

would not have found our novel account of the characteristic-to-defining shift and

might have proposed fundamental changes in learning mechanisms or representations

as was common in the literature (e.g., Kemler, 1983). With regard to a cognitive

agent’s internal conceptualization of a context, environmental/contextual constraints

are important for understanding the redundancy and sufficiency of a representation

and the tractability of a process. In our models, we explicitly represent the context

as a mental construct (family tree) and, further, incorporate the context into our

representation space: programs take as input contexts, which allows them to work

in any context (see also Katz et al., 2008). Future work should explore the extent to

which mental notions of the contexts 1) are constructed, 2) reflect the environment

and goals of the cognitive agent, 3) are incorporated in conceptual representations,

and 4) influence their deployment.



CHAPTER 6. DISCUSSION 180

6.2 The frontier of the concept-language interface

This dissertation has focused primarily on developmental constraints for the concept-

language interface, including conceptual primitives and compositional machinery,

likelihoods, inductive biases, and reflections of the environment (e.g., via internal

structures). Looking to the future, the concept-language interface will be an exciting

frontier for progress. Language for communication is predicated on the goals of up-

dating shared mental representations between interlocutors and inspiring illocution-

ary force, i.e., action in the world. Neither of these goals exist meaningfully without

a rich notion of context—be it the state of the world or the common ground between

individuals. The properties of the world and the goal structures of agents, provide

promising sources of contextual constraint that will make first-principle model explo-

ration more tractable. Further, the role of contextualized conceptual representations

will be vital to capturing the multiple affordances of concepts (e.g., generalization,

reasoning, simulation) prevalent in our everyday cognitive lives. In my own work, the

interface between language and concepts in context has informed our understanding

of how mental reflections of the context are constructed (Mollica & Piantadosi, 2015;

Yan, Mollica, & Tanenhaus, 2018; Rubio-Fernández, Mollica, Oraa Ali, & Gibson,

2019) and how conceptual representations are flexibly deployed in language process-

ing (Rubio-Fernández, Mollica, & Jara-Ettinger, under review; Register, Mollica,

& Piantadosi, under review). Nevertheless, we have only scratched the surface of

how cognition reflects the environment/contexts of use and the consequences of this

reflection for mental representations and processes.
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